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Abstract

This paper presents a global exponential stability (GES) proof for a signal-
based nonlinear wave encounter frequency estimator. The estimator under
consideration is a second-order nonlinear observer designed to estimate the
frequency of a sinusoid with unknown frequency, amplitude and phase. The
GES proof extends previous results that only guarantee global K-exponential
stability. Typical applications are control and decision-support systems for
marine craft, where it is important to know the sea state and wave fre-
quency. The theoretical results are verified experimentally by analyzing data
from towing tank experiments using a container ship scale model. The esti-
mates for both regular and irregular waves confirm the results. Finally, the
estimator is applied to full-scale data gathered from a container ship operat-
ing in the Atlantic Ocean during a storm. Again the theoretical results are
confirmed.

Keywords: Nonlinear observer, marine systems, sea-state estimation

1. Introduction

Estimation of the wave encounter frequency is an important part of sea-
state prediction, which is of great importance in many marine operations as
well as control systems design. Sea-state estimation also provides information
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to increase both the safety of operations at sea and the performance of control
systems for ships affected by waves.

To increase the safety of operations, knowledge of the wave encounter fre-
quency can be used for prediction of extreme waves, parametric roll resonance
and in-service monitoring. Knowledge of the sea-state, and in particular the
encounter frequency, is also important to increase the performance of marine
control systems. For ship autopilot and dynamic positioning (DP) systems
knowledge of the encounter frequency allows for better tuning of the low-pass
and notch filters used in wave filtering (Fossen, 2011, Ch. 11). On-line ad-
justment of controller and observer gains also require knowledge of the wave
encounter frequency (Fossen and Strand, 1999). This allows for automatic
gain scheduling of autopilots and DP systems.

1.1. Sea-state estimation

In the literature several techniques for estimation of the wave encounter
frequency or wave spectra have been presented. The classical method is to
obtain the wave spectrum from Fast Fourier Transform (FFT) frequency
spectral analysis (Enshaei and Birmingham, 2012). Unfortunately, creat-
ing a FFT frequency spectrum takes time and consequently it results in
back-dated information when estimating the time-varying wave encounter
frequency. This is due to the moving window necessary for applying the
FFT frequency spectral analysis. Hence, it is impossible to estimate a time-
varying wave encounter frequency without lag.

More advanced spectral estimation techniques allow estimation of direc-
tional wave spectra (Nielsen, 2006). This can be done by parametric or
non-parametric modeling. The parametric modeling approach typically as-
sumes that the wave spectrum is parametrized such that it can be estimated
using least-squares parameter matching of a bimodal spectrum for station-
ary vessels (Tannuri et al., 2003) and moving vessels (Nielsen, 2006). The
non-parametric modeling or Bayesian approach uses stochastic processes to
match the frequencies for stationary vessels (Iseki and Ohtsu, 2000) and mov-
ing vessels (Nielsen, 2006). These techniques have the same disadvantages
with respect to acquisition times as the FFT frequency spectral analysis.
However, besides the frequency of the waves, they also supply directional
information.

Another approach to wave encounter frequency estimation is to estimate
the peak frequency instead of the entire wave spectrum. This is a valid ap-
proach for application of sea-state estimation when designing control systems,
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since the peak frequency of the spectrum is used for wave filtering (Fossen,
2011, Ch. 11). Approaches using Kalman filters can be found in Belleter
et al. (2012) and Hassani et al. (2013). However, these approaches require a
dynamic model of the vessel. A signal-based approach was developed in Bel-
leter et al. (2013), where the measured roll or pitch angle is used to estimate
the wave frequency. This approach is taken in this paper and experimental
verification is included to justify the results.

1.2. Frequency estimation

Frequency estimation of oscillating signals is a well studied problem in
the signal processing literature. A discrete-time algorithm for a multifre-
quency signal based on an adaptive notch filtering was first proposed by
Regalia (1991). A continuous-time version of this algorithm was presented in
Bodson and Douglas (1997), while Hsu et al. (1999) have derived a globally
convergent continuous-time frequency estimator for a single frequency signal.

An adaptive technique based on the persistency of excitation (PE) of
oscillating signals was proposed in Marino and Tomei (2002), and extended
by Xia (2002) and Hou (2012). Two discrete-time algorithms based on PE
can also be found in Stotsky (2012).

The approach taken by the authors is based on the internal model prin-
ciple for identification of a single frequency. This was first introduced in
Nikiforov (1997) and further extended by Aranovskiy et al. (2007), Bobtsov
(2008), and Aranovskiy and Bobtsov (2012).

1.3. Main contribution

The main result of the paper is a nonlinear signal-based wave encounter
frequency estimator, which effectively estimates the ship wave encounter fre-
quency from heave, pitch or roll motion measurements. The wave encounter
frequency estimator under consideration is designed to estimate the frequency
of a sinusoid with unknown frequency, amplitude and phase by modifying the
algorithm of Aranovskiy et al. (2007) to include an adaptive gain-switching
mechanism. The GES proof extends previous results (Belleter et al., 2013)
that only guarantee uniform global asymptotic stability (UGAS) and uni-
form local exponential stability (ULES). This is also referred to as global
K-exponential stability (Sørdalen and Egeland, 1995).

The main motivation for introducing a gain-switching mechanism is that
it is important to improve the convergence of the estimator in situations with
little excitation (e.g. small roll and pitch angles) and vice versa. Typical

3



applications are marine craft control and decision-support systems where it
is important to know the sea state and wave frequency. The wave encounter
frequency estimator is experimentally verified through towing tank tests in
both regular and irregular waves. The estimator is also verified for 9-hours
of data gathered onboard the container vessel Clara Maersk during a storm
across the North Atlantic Ocean.

The wave estimator is implemented in real-time and consequently it is
much faster than the real-time requirement of the ship autopilot and DP
control systems, which typically samples data at 1–10 Hz. FFT is an off-line
algorithm, which use batches of data (moving window). The computational
footprint is higher and significantly affected by the acquisition time and nu-
merical processing of the data.

1.4. Organization of the paper

The paper is organized as follows: In Section 2 the wave encounter fre-
quency estimation problem is introduced and the Aranovskiy fixed-gain fre-
quency estimator is reviewed. Section 3 presents the switching-gain frequency
estimator and GES of the equilibrium point of the estimation error dynam-
ics is proven. Section 4 contains experimental verification using towing tank
experiments and full-scale data of a container ship.

2. Estimation of the Wave Spectrum Encounter Frequency

Characterization of the sea state for marine operations is generally done
in terms of a limited number of fundamental parameters, which are used to
calculate approximations of the wave spectrum. Those parameters are the
significant wave height Hs, the wave modal frequency (peak frequency) ω0,
and the wave encounter angle βe that is the relative angle between the vessel
heading and the the main direction of the wave train. Knowledge of those
parameters may reveal to be of extreme importance in order to schedule and
perform activities at sea in a safe, reliable and cost effective manner.

For vessels in transit at forward speed U > 0 the experienced wave ex-
citation does not occur at the modal frequency ω0 because of the Doppler
shift. The frequency observed from the vessel in motion is given by:

ωe(ω0, U, βe) =

∣∣∣∣ω0 −
ω2
0

g
U cos(βe)

∣∣∣∣ (1)
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which is known as the wave encounter frequency. Awareness about ωe would
allow performance enhancement of ship control systems. For instance autopi-
lots and DP systems use wave filters, which are tuned to suppress oscillations
at the encounter frequency, in order to reduce the workload of the steering
and propulsion systems.

Although waves are usually described as narrow-band stochastic pro-
cesses, the associated spectrum is certainly richer in frequency content than
a single sinusoid. Nevertheless spectral analysis of wave-induced vessel mo-
tions usually displays a dominant frequency associated with the peak of the
spectrum. During the transient the natural frequencies of the different modes
can be observed in the spectrum giving rise to multiple peaks. However, If
the waves are large enough the ship will oscillate at ωe in all 6 degrees-of-
freedom in steady state. For multi-peaked wave spectra with a dominant
peak the proposed method will provide an estimate close to the frequency of
the highest peak. Analytically the problem can be formulated as:

Problem definition (Wave encounter frequency estimation)
Given the signal in the form:

y(t) = A(t) sin(ωet+ ε) (2)

with A(t) the unknown amplitude, ωe the unknown frequency and ε the un-
known phase, reconstruct on-line the frequency ωe based solely on noisy mea-
surements of y(t).

2.1. The Aranovskiy fixed-gain frequency estimator

Before presenting the main contribution of the paper (Theorem 1), we
first review the signal-based frequency estimator proposed by Aranovskiy
et al. (2007), which is instrumental in our design.

The sinusoidal signal (2) can be represented by the differential equation:

ÿ = ϕy (3)

where ϕ := −ω2
e is treated as an unknown parameter. The frequency ωe

of the signal (2) can be estimated using an auxiliary filter (Aranovskiy and
Bobtsov, 2012):

ζ̇1 = ζ2 (4)

ζ̇2 = −2ωfζ2 − ω2
fζ1 + ω2

fy (5)
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where the filter cut-off frequency must be chosen such that 0 < ωe < ωf .
The transfer function corresponding to (4)–(5) is found by Laplace transfor-
mation:

ζ1(s) =
ω2
f

(s+ ωf )2
y(s) (6)

From (3) it follows that s2y(s) = ϕy(s) and

y(s) =
ϕ+ 2ωfs+ ω2

f

(s+ ωf )2
y(s)

=
2ωfs+ ω2

f + ϕ

ω2
f

ζ1(s) (7)

Transforming this expression to the time domain gives:

y =
1

ω2
f

(
2ωfζ2 + ω2

fζ1 + ϕζ1
)

(8)

The Aranovskiy et al. (2007) parameter update law for ϕ uses the computed
measurement:

y′ := ζ̇2 = −2ωfζ2 − ω2
fζ1 + ω2

fy = ϕζ1 (9)

Let ϕ̂ denote the parameter estimate and define:

ŷ′ := ϕ̂ζ1 (10)

The parameter update law is chosen as:

˙̂ϕ = k0 ζ1(y
′ − ŷ′) (11)

where k0 > 0 is the constant observer gain. Consequently, the resulting
frequency estimator becomes:

ζ̇1 = ζ2 (12)

ζ̇2 = −2ωfζ2 − ω2
fζ1 + ω2

fy (13)

˙̂ϕ = k0 ζ1(ζ̇2 − ϕ̂ζ1) (14)

The differential equation for the parameter estimation error ϕ̃ = ϕ − ϕ̂
where ϕ is assumed to be constant becomes:

˙̃ϕ = −k0 ζ21 ϕ̃ (15)
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The wave component (2) has a positive amplitude 0 < Amin ≤ A for ∀t ≥ 0
and frequency ωe > 0. For frequencies ωe < ωf , the time-domain solution of
(6) for a sinusoidal input (2) is ζ1 = A sin(ωet + ε1) where ε1 is the phase.
The signal ζ1 is persistently exciting (PE) since there exist a positive µ and
T such that

µ ≤
∫ t+T

t

ζ21 (τ) dτ, ∀t ≥ 0 (16)

The PE-condition (16) is used to prove that the the equilibrium point of the
estimation error dynamics (15) is GES for constant adaptation gain k0 > 0
and A > 0. This result will be generalized to time-varying adaptation gain
and wave amplitude in Section 3.

The solutions of (15) satisfy:

‖ϕ̃‖ = ‖ϕ̃(t0)‖e−k0
∫ t
t0
ζ21 (τ) dτ

= ‖ϕ̃(t0)‖ e−k0
∫ t
t0
A2 sin2(ωeτ+ε1) dτ

(17)

with ∫ t

t0

A2 sin2(ωeτ + ε1) dτ =
A2

2
(t− t0)−

A2

4ωe
sin(2ωet+ 2ε1)

+
A2

4ωe
sin(2ωet0 + 2ε1) (18)

Substituting (18) in (17) gives:

‖ϕ̃‖ = ‖ϕ̃(t0)‖ e−
k0A

2

2
(t−t0)e

k0A
2

4ωe
[sin(2ωet+2ε1)−sin(2ωet0+2ε1)]

≤ c ‖ϕ̃(t0)‖ e−λ(t−t0) (19)

where c = ek0A
2/2ωe > 0 and λ = k0A

2/2 > 0. Hence, by Khalil (2012,
Definition 4.5) the equilibrium point ϕ̃ = 0 of (15) is GES.

Remark 1 (Filter cut-off frequency). The choice of the cut-off frequency
ωf should be made based on desired performance – i.e. convergence rate and
steady state error – and noise filtering capabilities. ωf clearly influences the
convergence rate of the estimator as shown in Figure 1, where the frequency
of a sinusoidal function oscillating at 0.5 rad/s is estimated for increasing
value of the cut-off frequency. Small cut-off frequencies result in a slow con-
vergence rate. However, higher cut-off frequencies introduce some oscillations
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Figure 1: Frequency estimates using different cut-off frequencies ωf .

in steady-state, as visible from the estimate done with ωf = 20 rad/s. It is
interesting to note that moderately increasing the cut-off frequency can signif-
icantly increase the convergence rate while the increase in steady-state error
is negligible.

3. Switching-Gain Wave Encounter Frequency Estimator

The GES stability proof for the Aranovskiy frequency estimator (Section
2.1) is based on a constant observer gain k0 > 0. For marine craft the
roll and pitch angles may be quite small when operating in low sea states.
Consequently, it is advantageous to switch between a high and low gain in
the parameter update law depending on the amplitude of the pitch angle. In
Belleter et al. (2013) it was shown that the frequency estimator (14) could be
modified to include a switching gain k(A), which depends on the amplitude
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A of the measured signal. Moreover,

k(A) =


kinit if, t ≤ tinit
kmin if, t > tinit ∧ A > A0

kmax if, t > tinit ∧ A ≤ A0

(20)

Here kinit ≥ kmin > 0 is the initial gain used to increase the convergence
rate at start up. During normal operation the gain is switched between the
positive gains kmin and kmax. Moreover, the gain k(A) will switch to the high
value if the amplitude A ≤ A0 and to the low gain when A > A0.

To implement the switching mechanism (20) online we need to know
the amplitude A of the measured signal y. Since we cannot measure A
an estimator based on the squared signal of (2) can be used for switching.
Moreover,

y2 =
A2

2
(1− cos(2ωet+ 2ε)) (21)

The signal (21) can be low-pass filtered to obtain the amplitude A2/2 of the
squared signal y2. For instance,

χ =
1

Ts+ 1
y2 (22)

where T > 0 implies that the estimated amplitude becomes:

Â =
√

2χ (23)

3.1. Wave encounter frequency estimator with switching-gain

The results of Belleter et al. (2013) are in this section extended to be
GES for time-varying wave amplitude A(t) and adaptation gain kf (t) by

introducing a low-pass filter for the gain k(Â) according to:

Tf k̇f + kf = k(Â) (24)

where Tf > 0 is the filter time constant and k(Â) ≤ max(kmax, kinit). The
parameter update law (14) is modified according to:

˙̂ϕ = kf ζ1

(
ζ̇2 − ζ1ϕ̂

)
(25)

and GES is guaranteed by Theorem 1, which is presented below. The effect
of low-pass filtering on the gain switching is illustrated in Figure 2.
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Figure 2: Illustration of low-pass filtered gain changes for step inputs k(Â).

Theorem 1 (GES switching-gain estimator). Let the time-varying wave
amplitude satisfy 0 < Amin ≤ A(t) for all t ≥ 0. Assume that ϕ = −ω2

e is
constant and that kf (t) is the solution of (24) for Tf > 0 and step input

k(Â) given by (20). Then the equilibrium point ϕ̃ = 0 of the estimation error
dynamics:

˙̃ϕ = −kf ζ21 ϕ̃ (26)

is GES.

Proof. From Formulae (20) and (24) it follows that 0 < kmin ≤ kf (t) ≤ kmax

for all Â. The solutions of (26) satisfy:

‖ϕ̃‖ = ‖ϕ̃(t0)‖e−
∫ t
t0
kf ζ

2
1 (τ) dτ

≤ ‖ϕ̃(t0)‖ e−kmin

∫ t
t0
A2 sin2(ωeτ+ε1) dτ

≤ ‖ϕ̃(t0)‖ e−kminA
2
min

∫ t
t0

sin2(ωeτ+ε1) dτ
(27)

Application of (18) to (27) gives:

‖ϕ̃‖ ≤ ‖ϕ̃(t0)‖ e−
kminA2

min
2

(t−t0)e
kminA2

min
2ωe

≤ c ‖ϕ̃(t0)‖ e−λ(t−t0) (28)

where c = ekminA
2
min/2ωe > 0 and λ = kminA

2
min/2 > 0. Hence, by Khalil (2012,

Definition 4.5) the equilibrium point ϕ̃ = 0 of (26) is GES.

3.2. Low-pass filtering of the wave encounter frequency estimate

Since the measured ship motions in general display a non-pure sinusoidal
behavior due to the narrow-band spectral characteristic of the wave motions,
the estimate ϕ̂ provided by (25) will show high-frequency fluctuations as
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a result. Therefore, if the encounter frequency estimator is to be used in
applications such as adaptive wave filtering or gain-scheduling control, the
high-frequency variations are certainly undesirable since they may introduce
chattering in the system. A straightforward solution to this problem is to
apply a low-pass filter at the output of the estimator (25), to obtain a running
mean of the encounter frequency estimate. Consider the system:

˙̂ϕ = kf ζ1

(
ζ̇2 − ζ1ϕ̂

)
(29)

ϕ̇f = Aϕf + bϕ̂ (30)

where ϕf ∈ Rn is the vector whose first component ϕf,1 is the low-pass
filtered ϕ̂. The Hurwitz design matrix A and the vector b = [0, 0, 0, . . . , 1]T

define the low-pass filter. By rewriting (29) in terms of the estimation error
ϕ̃, and by applying a change of coordinates ξ = ϕf + A−1bϕ the following
cascaded system is obtained:

Σ1 : ˙̃ϕ = −kf ζ21 ϕ̃ (31)

Σ2 : ξ̇ = Aξ + bϕ̃ (32)

GES of the cascade Σ1–Σ2 is guaranteed by Corollary 1.

Corollary 1 (GES cascade). The origin of the cascade Σ1–Σ2 is GES.

Proof. The origin of (31) is GES according to Theorem 1. For ϕ̃ = 0 the
differential equation (32) reduces to ξ̇ = Aξ (nominal system) whose origin is
GES since A is Hurwitz. In addition, the linear growth condition ‖bϕ̃‖ ≤ |ϕ̃|
is satisfied for all ϕ̃. Hence, according to Loria and Panteley (2004, Theorem
2.1, Proposition 2.3) the origin of the cascade Σ1–Σ2 is GES.

4. Experimental Verification

The performance of the estimator (20)–(25) in Section 3 is tested on
experimental and full-scale data using heave and pitch data. This to demon-
strate that the wave frequency estimator performs equally well for both sig-
nals. Operationally this will provide flexibility for the operator, which could
use measurements provided by either a heave accelerometer or a pitch rate
gyro. First, the wave encounter frequency estimator is applied to experi-
mental data gathered through towing tank experiments. Subsequently, the
estimator is applied to full-scale sea trial data gathered aboard the container
vessel Clara Maersk in an Atlantic passage during a storm.

11



Figure 3: Model ship in the towing tank. Photo courtesy of Dr I. Drummen.

4.1. Towing tank experiments

The experimental data considered here was gathered through towing tank
tests with a 1:45 scale model of 281 m long container ship with volume
displacement 76 000 m3 (see Figure 3). The detailed model and all the
hydrodynamic coefficients can be found in Holden et al. (2007).

Table 1: Towing-tank experiment (full scale equivalents)

Exp. U [m/s] ω0 [rad/s] Hw [m] ωe [rad/s]

R–1173 5.4806 0.4425 2.5 0.5519
R–1189 7.6675 0.4640 2.5 0.6324
I –1195 6.0240 0.4640 9 0.5963

The experimental conditions are reported in Table 1. For the regular
wave experiments (R–1173 and R–1189) ω0 is the wave frequency and Hw is
the wave amplitude. For the irregular wave experiment (I –1195) ω0 is the
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Figure 4: Comparison of the frequency estimator with and without a gain switching mech-
anism.

peak wave frequency and Hw is the significant wave height. U and ωe are the
ship forward speed and the wave encounter frequency, respectively.

4.1.1. Comparative study of the fixed and variable gain estimators

The data set R-1173 is used for comparing the performance of the Ara-
novskiy fixed-gain frequency estimator with the proposed switching-gain so-
lution (Theorem 1). This data set is well suited for this comparison because
the amplitude variations of the pitch angle emphasizes the importance of the
switching mechanism. The parameters settings for both estimators can be
fond in Table 2. Note that the value of k0 is chosen equal to kmin. This
choice guarantees a small steady-sate error during the first 15 minutes of the
measurement where the pitch angle shows large amplitudes.

Figure 4 illustrates the results of the comparative study. The use of
the very large initialization gain kinit (Figure 4(b)) boosts the convergence
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Table 2: Parameter settings for the comparative study.

Quantity Symbol Value Unit

Switching time constant Tf 0.05 s
Filter cut-off frequency ωf 1 rad/s
Switching amplitude pitch Aθ,0 0.01 rad
Initialization time tinit 100 s
Initialization gain kinit 1500 -
Filter low gain klow 50 -
Filter high gain khigh 1000 -
Fixed gain kfixed 50 -

rate of the switching-gain estimator, which settles to the true value of the
encounter frequency approximately 4 minutes before the fixed-gain estimator
(Figure 4(c)). After both filters have converged they have the same gain,
and hence the same small steady-state error. When the encounter frequency
changes the estimators initially converge to the new value at the same rate.
However, when the amplitude gets below the switching threshold A0 the
switching-gain estimator switches to the much high gain kmax, as shown in
Figure 4(b). This allows faster convergence towards the correct frequency
before the excitation becomes too small. The fixed-gain estimator does not
converge to the true value because the gain is to small for limited excitation.

4.1.2. Performance assessment on towing tank data

The estimator is tested on pitch and heave measurements gathered during
experiments R–1173 and R–1189, and on a heave measurement gathered
during the experiment I –1195. The settings for the filter and gain switching
parameters are given in Table 3.

At the first the frequency estimator is tested on a measurement of the
pitch angle θ(t), as shown in Figure 5(a). The 30 minutes long time series
is obtained by joining the pitch angles measured in experiments R–1173
and R–1189, and the last 15 minutes of the recording have been amplitude
modulated through a decaying exponential function. This behavior has been
appositely introduced in order to test the capability of the estimator to track
frequency variations in vanishing signals.

The spectral analysis shown in Figure 5(b) clearly shows a frequency shift
between the first 15 minutes of the experiments and the second ones in total
agreement with the data reported in Table 1. Moreover, the nature of the
excitation used in the regular wave experiments determines a very narrow-
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Figure 5: Test I: estimation of wave encounter frequency from exponentially modulated
pitch angle measurements collected during regular wave experiments R–1173 and R–1189.
The estimator rapidly converges to and track the peak frequency of the power spectral
density Θ(ω).

band power spectral density (PSD) denoted Θ(ω), and this will ease the
estimation process.

The estimate of the wave encounter frequency ω̂e and the changes in the
gain kf can be seen in Figures 5(c)–(d). The two horizontal lines in the
frequency estimate plot correspond to the peaks in the PSD’s. Figure 5(c)
shows that the estimate ω̂e rapidly converges to the frequency associated to
the largest peak of Θ1(ω). During the transition to the exponential decaying
pitch angle the frequency estimate drops to values in the neighborhood of
the small side-lobe of the PSD Θ2(ω) and then converges to the frequency
value associated with the largest peak of Θ2(ω).

Figure 6(a) illustrates the measurement of the heave displacement z(t)
recorded during the regular wave experiments. The power spectral density
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Table 3: Switching-gain estimator parameter settings for towing-tank data.

Quantity Symbol Value Unit

Switching time constant Tf 0.05 s
Filter cut-off frequency ωf 1 rad/s
Switching amplitude pitch Aθ,0 0.01 rad
Switching amplitude heave Az,0 0.6 m
Initialization time tinit 100 s
Initialization gain kinit 500 -
Filter low gain kmin 250 -
Filter high gain kmax 1000 -

Z(ω) shown in Fig. 6(b) obviously confirms the position of the peak fre-
quencies already identified in the PSD of the pitch angle. The estimate of
the wave encounter frequency is not as sharp as seen in relation to the pitch
measurement, as shown in Figure 6(c). This reduced precision in estimat-
ing the correct value of ωe may be explained by the presence of side lobs in
both PSDs Z1(ω) and Z2(ω). If fact for both tranches of the heave mea-
surement the estimate ω̂e is pulled towards slightly higher frequency values
clearly addressing the influence of the side lobes in the estimation process.
Last, Figure 6(d) shows that the switching-gain strategy is very active due
to the large variability of the heave amplitude Az.

At last the switching-gain frequency estimator is tested on measurements
of the heave displacement recorded during the irregular waves experiment I –
1195, as shown in Figure 7(a). The large significant wave height together with
the irregular pattern of the wave train exciting the vessel determine repeated
large and asymmetric variations of the heave displacement. This behavior
largely differs from the sinusoidal one and challenges the frequency estimator,
as shown in Figure 7(c). The estimate ω̂e of the encounter frequency shows
larger variations as a result of the broader frequency range the power spectral
density Z(ω) spans over. Moreover the presence of multiple peaks of almost
equal magnitude in the PSDs, as for Z2(ω) and Z3(ω), increases the difficulty
of identifying the main frequency carrier.

Figure 7(c) shows that the estimator slightly overestimates the peak fre-
quency of Z1(ω), which can be explained by the skewness of the PSD towards
the higher frequencies. Between 6 and 12 minutes the estimates varies be-
tween 0.5 and 0.7 rad/s, which can be expected since Z2(ω) shows not clear
dominant peak during this time interval. For the last 5 minutes ω̂e first oscil-
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Figure 6: Test II: estimation of wave encounter frequency from heave displacement mea-
surements collected during regular wave experiments R–1173 and R–1189. The encounter
frequency estimator converges towards the true value of the two main peak frequencies
of Z(ω), however the presence of side lobs in the power spectral density influences the
estimation process pulling ω̂e towards slightly higher values.

lates around 0.6 rad/s, and than decreases to around 0.5 rad/s, which once
again nearly matches the location of the two peaks of the power spectral
density Z3(ω).

In order to reduce these fluctuations a low-pass filter is added at the
output of the switching-gain estimator. This smooths the behavior of the
frequency estimate of the encounter wave, which now stays much closer to
the true value at all times, as shown by the green line in Figure 7(c).

4.2. Atlantic passage full-scale data

The final test of the switching-gain frequency estimator is run on a data
set of full-scale ship motions’ data recorded on board the container ship
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Figure 7: Test III: estimation of wave encounter frequency from heave displacement mea-
surements collected during irregular wave experiment I –1195. The encounter frequency
estimator converges towards the true value of the two main peak frequencies of Z(ω),
however the presence of side lobs in the power spectral density influences the estimation
process pulling ω̂e towards slightly higher values.

Clara Maersk crossing the North Atlantic Ocean during a storm. The length
of the vessel was 197 m and its displacement volume was 33 000 m3. Time
series used here correspond to the pitch angle recorded during nine hours
of navigation. Due to the larger amplitudes induced by the stormy weather
different settings of the gain switching mechanism have been chosen. The
settings for the filter and the gain switching mechanism are given in Table 4.

4.2.1. Performance assessment on full-scale data

The measurement of the pitch angle aboard the ship is presented in Fig-
ure 8(a). The measurements show that the amplitude of the pitch angle is
fairly constant over a long period of time, with the exception of few larger
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Figure 8: Test IV: estimation of wave encounter frequency from pitch angle measurements
collected aboard Clara Maersk during a passage through the North Atlantic. The wave
encounter frequency estimator succeeds in rapidly identifying the range of frequencies
where the dominant spectral components fall into.

peaks. Figure 9 presents the evolution of the pitch power spectral density
Θ(ω) over the nine hours, and the wave encounter frequency identified as the
frequency of the largest peak of each PSD. The power spectral density spans
over a very broad range of frequencies with a multitude of peaks; however,
the main spectral components are in the range 0.7–0.8 rad/s.

The estimate of the encounter frequency based on the pitch measurement
is given in Figure 8(b), which shows that ω̂e is also in the range 0.7–0.8
rad/s. Comparing the estimate of the encounter frequency with ωe identified
through the analysis of the power spectral density it can be noted that ω̂e
converges to values in close proximity to ωe. Application of a low-pass filter
to the output of the switching-gain frequency estimator helps in smoothing
the obtained frequency estimate. Figure 8(b) also shows the switching gain
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Figure 9: Evolution of the pitch power spectral density over 9 hours of navigation across
a storm.

strategy. Since the amplitude Aθ of the measured pitch angle is rather con-
stant and sufficiently exciting for rapid adaptation there are only few gain
switches.

5. Conclusions

Knowledge of the parameters characterizing the sea state is of extreme
value in order to carry out marine operations in a safe, reliable and cost
effective ways. This paper has derived a signal-based nonlinear observer
for the estimation of the wave encounter frequency. The kernel of the de-
signed estimator is a second-order nonlinear observer with a switching-gain
mechanism designed to estimate the frequency of a sinusoid with unknown
frequency, amplitude and phase. The origin of the estimation error dynamics
is proven to be global exponentially stable, extending previous results that
only guaranteed global K-exponential stability.
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Table 4: Switching-gain estimator parameter settings for full-scale data.

Quantity Symbol Value Unit

Switching time constant Tf 0.05 s
Filter cut-off frequency ωf 1 rad/s
Switching amplitude pitch Aθ,0 0.01 rad
Initialization time tinit 100 s
Initialization gain pitch angle kinit 50 -
Filter low gain pitch angle kmin 25 -
Filter high gain pitch angle kmax 100 -

The frequency estimator has been extensively tested on model-scale mo-
tion data of a container ship gathered during towing tank experiments in
regular and irregular waves, and on full-scale motion data of a container ship
recorded in an Atlantic passage during a storm. In all scenarios the nonlin-
ear switching-gain frequency estimator succeeds in identifying the frequency
range where the encounter frequency falls into. Extremely good results in
terms of fast convergence and tracking are obtained for the model-scale data
collected in the regular wave experiments, since the ship responses in pitch
and heave closely resemble pure sinusoidal signals. The broadening of the
spectral content of the heave and pitch responses recorded in the irregular
wave experiment and in the sea trial clearly challenges the capabilities of
the observer to converge to the true value of the wave encounter frequency.
Nevertheless, the frequency estimator achieves its objective, by providing an
estimate within the frequency range where the main spectral components
are.
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