94 research outputs found

    The Origin of the Place Names of Nebraska

    Get PDF

    Energy and Flux Measurements of Ultra-High Energy Cosmic Rays Observed During the First ANITA Flight

    Get PDF
    The first flight of the Antarctic Impulsive Transient Antenna (ANITA) experiment recorded 16 radio signals that were emitted by cosmic-ray induced air showers. For 14 of these events, this radiation was reflected from the ice. The dominant contribution to the radiation from the deflection of positrons and electrons in the geomagnetic field, which is beamed in the direction of motion of the air shower. This radiation is reflected from the ice and subsequently detected by the ANITA experiment at a flight altitude of 36km. In this paper, we estimate the energy of the 14 individual events and find that the mean energy of the cosmic-ray sample is 2.9 EeV. By simulating the ANITA flight, we calculate its exposure for ultra-high energy cosmic rays. We estimate for the first time the cosmic-ray flux derived only from radio observations. In addition, we find that the Monte Carlo simulation of the ANITA data set is in agreement with the total number of observed events and with the properties of those events.Comment: Added more explanation of the experimental setup and textual improvement

    The Antarctic Impulsive Transient Antenna Ultra-high Energy Neutrino Detector Design, Performance, and Sensitivity for 2006-2007 Balloon Flight

    Full text link
    We present a detailed report on the experimental details of the Antarctic Impulsive Transient Antenna (ANITA) long duration balloon payload, including the design philosophy and realization, physics simulations, performance of the instrument during its first Antarctic flight completed in January of 2007, and expectations for the limiting neutrino detection sensitivity. Neutrino physics results will be reported separately.Comment: 50 pages, 49 figures, in preparation for PR

    Ab initio calculations of optical properties of silver clusters: cross-over from molecular to nanoscale behavior

    Get PDF
    Electronic and optical properties of silver clusters were calculated using two different \textit{ab initio} approaches: 1) based on all-electron full-potential linearized-augmented plane-wave method and 2) local basis function pseudopotential approach. Agreement is found between the two methods for small and intermediate sized clusters for which the former method is limited due to its all-electron formulation. The latter, due to non-periodic boundary conditions, is the more natural approach to simulate small clusters. The effect of cluster size is then explored using the local basis function approach. We find that as the cluster size increases, the electronic structure undergoes a transition from molecular behavior to nanoparticle behavior at a cluster size of 140 atoms (diameter ∌1.7\sim 1.7\,nm). Above this cluster size the step-like electronic structure, evident as several features in the imaginary part of the polarizability of all clusters smaller than Ag147_\mathrm{147}, gives way to a dominant plasmon peak localized at wavelengths 350\,nm≀λ≀\le\lambda\le 600\,nm. It is, thus, at this length-scale that the conduction electrons' collective oscillations that are responsible for plasmonic resonances begin to dominate the opto-electronic properties of silver nanoclusters

    GRAPEVINE VIRUS DISEASES:ECONOMIC IMPACT AND CURRENT ADVANCES IN VIRAL PROSPECTION AND MANAGEMENT

    Full text link

    The Origin of the Place Names of Nebraska

    Get PDF

    Inversion of a land seismic data set after extraction of the dynamite wavelet

    No full text
    • 

    corecore