10 research outputs found

    The impact of intrauterine growth restriction on cytochrome P450 enzyme expression and activity

    No full text
    With the increased prevalence of non-communicable disease and availability of medications to treat these and other conditions, a pregnancy free from prescribed medication exposure is rare. Up to 99% of women take at least one medication during pregnancy. These medications can be divided into those used to improve maternal health and wellbeing (e.g., analgesics, antidepressants, antidiabetics, antiasthmatics), and those used to promote the baby's wellbeing in either fetal (e.g., anti-arrhythmics) or postnatal life (e.g., antenatal glucocorticoids). These medications are needed for pre-existing or coincidental illnesses in the mother, maternal conditions induced by the pregnancy itself through to conditions that arise in the fetus or that will be encountered by the newborn. Thus, medications administered to the mother may be used to treat the mother, the fetus or both. Metabolism of medications is regulated by a range of physiological processes that change during pregnancy. Other pathological processes such as placental insufficiency can in turn have both immediate and lifelong adverse health consequences for babies. Individuals born growth restricted are more likely to require medications but may also have an altered ability to metabolise these medications in fetal and postnatal life. This review aims to determine the effect of suboptimal fetal growth on the fetal expression of the drug metabolising enzymes (DMEs) that convert medications into active or inactive metabolites, and the transporters that remove both these medications and their metabolites from the fetal compartment.Grace M. McBride, Michael D. Wiese, Jia Yin Soo, Jack R.T. Darby, Mary J. Berry, Tamara J. Varcoe, Janna L. Morriso

    Importance of Balancing Membrane and Electrode Water in Anion Exchange Membrane Fuel Cells

    Get PDF
    Anion exchange membrane fuel cells (AEMFCs) offer several potential advantages over proton exchange membrane fuel cells (PEMFCs), most notably to overcome the cost barrier that has slowed the growth and large scale implementation of fuel cells for transportation. However, limitations in performance have held back AEMFCs, specifically in the areas of stability, carbonation, and maximum achievable current and power densities. In order for AEMFCs to contend with PEMFCs for market viability, it is necessary to realize a competitive cell performance. This work demonstrates a new benchmark for a H2/O2 AEMFC with a peak power density of 1.4 W cm−2 at 60 °C. This was accomplished by taking a more precise look at balancing necessary membrane hydration while preventing electrode flooding, which somewhat surprisingly can occur both at the anode and the cathode. Specifically, radiation-grafted ETFE-based anion exchange membranes and anion exchange ionomerpowder, functionalized with benchmark benzyltrimethylammonium groups, were utilized to examine the effects of the following parameters on AEMFC performance: feed gas flow rate, the use of hydrophobic vs. hydrophilic gas diffusion layers, and gas feed dew points

    Circadian control by serotonin and melatonin receptors: Clinical relevance

    No full text
    corecore