2,033 research outputs found

    Automated design analysis, assembly planning and motion study analysis using immersive virtual reality

    Get PDF
    Previous research work at Heriot-Watt University using immersive virtual reality (VR) for cable harness design showed that VR provided substantial productivity gains over traditional computer-aided design (CAD) systems. This follow-on work was aimed at understanding the degree to which aspects of this technology were contributed to these benefits and to determine if engineering design and planning processes could be analysed in detail by nonintrusively monitoring and logging engineering tasks. This involved using a CAD-equivalent VR system for cable harness routing design, harness assembly and installation planning that can be functionally evaluated using a set of creative design-tasks to measure the system and users' performance. A novel design task categorisation scheme was created and formalised which broke down the cable harness design process and associated activities. The system was also used to demonstrate the automatic generation of usable bulkhead connector, cable harness assembly and cable harness installation plans from non-intrusive user logging. Finally, the data generated from the user-logging allowed the automated activity categorisation of the user actions, automated generation of process flow diagrams and chronocyclegraphs

    Electronic damping of molecular motion at metal surfaces

    Full text link
    A method for the calculation of the damping rate due to electron-hole pair excitation for atomic and molecular motion at metal surfaces is presented. The theoretical basis is provided by Time Dependent Density Functional Theory (TDDFT) in the quasi-static limit and calculations are performed within a standard plane-wave, pseudopotential framework. The artificial periodicity introduced by using a super-cell geometry is removed to derive results for the motion of an isolated atom or molecule, rather than for the coherent motion of an ordered over-layer. The algorithm is implemented in parallel, distributed across both k{\bf k} and g{\bf g} space, and in a form compatible with the CASTEP code. Test results for the damping of the motion of hydrogen atoms above the Cu(111) surface are presented.Comment: 10 pages, 3 figure

    Computing optimal strategies for a cooperative hat game

    Full text link
    We consider a `hat problem' in which each player has a randomly placed stack of black and white hats on their heads, visible to the other player, but not the wearer. Each player must guess a hat position on their head with the goal of both players guessing a white hat. We address the question of finding the optimal strategy, i.e., the one with the highest probability of winning, for this game. We provide an overview of prior work on this question, and describe several strategies that give the best known lower bound on the probability of winning. Upper bounds are also considered here

    Approximate Deadline-Scheduling with Precedence Constraints

    Full text link
    We consider the classic problem of scheduling a set of n jobs non-preemptively on a single machine. Each job j has non-negative processing time, weight, and deadline, and a feasible schedule needs to be consistent with chain-like precedence constraints. The goal is to compute a feasible schedule that minimizes the sum of penalties of late jobs. Lenstra and Rinnoy Kan [Annals of Disc. Math., 1977] in their seminal work introduced this problem and showed that it is strongly NP-hard, even when all processing times and weights are 1. We study the approximability of the problem and our main result is an O(log k)-approximation algorithm for instances with k distinct job deadlines

    Phonons and specific heat of linear dense phases of atoms physisorbed in the grooves of carbon nanotube bundles

    Full text link
    The vibrational properties (phonons) of a one-dimensional periodic phase of atoms physisorbed in the external groove of the carbon nanotube bundle are studied. Analytical expressions for the phonon dispersion relations are derived. The derived expressions are applied to Xe, Kr and Ar adsorbates. The specific heat pertaining to dense phases of these adsorbates is calculated.Comment: 4 PS figure

    Weak noise approach to the logistic map

    Full text link
    Using a nonperturbative weak noise approach we investigate the interference of noise and chaos in simple 1D maps. We replace the noise-driven 1D map by an area-preserving 2D map modelling the Poincare sections of a conserved dynamical system with unbounded energy manifolds. We analyze the properties of the 2D map and draw conclusions concerning the interference of noise on the nonlinear time evolution. We apply this technique to the standard period-doubling sequence in the logistic map. From the 2D area-preserving analogue we, in addition to the usual period-doubling sequence, obtain a series of period doubled cycles which are elliptic in nature. These cycles are spinning off the real axis at parameters values corresponding to the standard period doubling events.Comment: 22 pages in revtex and 8 figures in ep

    Generalized Farey trees, transfer Operators and phase transitions

    Full text link
    We consider a family of Markov maps on the unit interval, interpolating between the tent map and the Farey map. The latter map is not uniformly expanding. Each map being composed of two fractional linear transformations, the family generalizes many particular properties which for the case of the Farey map have been successfully exploited in number theory. We analyze the dynamics through the spectral analysis of generalized transfer operators. Application of the thermodynamic formalism to the family reveals first and second order phase transitions and unusual properties like positivity of the interaction function.Comment: 39 pages, 10 figure

    Fermionic Vacuum Energy from a Nielsen-Olesen Vortex

    Full text link
    We calculate the vacuum energy of a spinor field in the background of a Nielsen-Olesen vortex. We use the method of representing the vacuum energy in terms of the Jost function on the imaginary momentum axis. Renormalization is carried out using the heat kernel expansion and zeta functional regularization. With this method well convergent sums and integrals emerge which allow for an efficient numerical calculation of the vacuum energy in the given case where the background is not known analytically but only numerically. The vacuum energy is calculated for several choices of the parameters and it turns out to give small corrections to the classical energy.Comment: 22 pages, 6 figure

    In situ phase behaviour of a high capacity LiCoPO4 electrode during constant or pulsed charge of a lithium cell

    No full text
    The phase changes that occur during lithium extraction from LiCoPO4 in lithium half-cells were studied using synchrotron X-ray diffraction. The existence of two two-phase regions with an intermediate phase present was observed. Significant variations in the composition of the phases of nominal stoichiometry LiCoPO4, Li2/3CoPO4 and CoPO4 resulted in unit cell volume variations. On current pulsing, lattice parameter shifts and phase recovery were directly observed
    corecore