78 research outputs found

    Minimizing Effective Many-Body Interactions

    Full text link
    A simple two-level model is developed and used to test the properties of effective interactions for performing nuclear structure calculations in truncated model spaces. It is shown that the effective many-body interactions sensitively depend on the choice of the single-particle basis and they appear to be minimized when a self- consistent Hartree-Fock basis is used.Comment: (15 pages of text and 1 postscript figure (Figure available upon request), Preprint Number not assigned ye

    Exact Solutions of Model Hamiltonian Problems with Effective Interactions

    Full text link
    We demonstrate with soluble models how to employ the effective Hamiltonian approach of Lee and Suzuki to obtain all the exact eigenvalues of the full Hamiltonian. We propose a new iteration scheme to obtain the effective Hamiltonian and demonstrate its convergence properties.Comment: 12 pages and 1 figur

    Electron in a transverse harmonic cavity

    Full text link
    We employ Hamiltonian light-front quantum field theory in a basis function approach to solve the non-perturbative problem of an electron in a strong scalar transverse confining potential. We evaluate both the invariant mass spectra and the anomalous magnetic moment of the lowest state for this two-scale system. The weak external field limit of the anomalous magnetic moment agrees with the result of QED perturbation theory within the anticipated accuracy.Comment: 4 pages, 3 figures, published versio

    Auxiliary potential in no-core shell-model calculations

    Full text link
    The Lee-Suzuki iteration method is used to include the folded diagrams in the calculation of the two-body effective interaction veff(2)v^{(2)}_{\rm eff} between two nucleons in a no-core model space. This effective interaction still depends upon the choice of single-particle basis utilized in the shell-model calculation. Using a harmonic-oscillator single-particle basis and the Reid-soft-core {\it NN} potential, we find that veff(2)v^{(2)}_{\rm eff} overbinds ^4\mbox{He} in 0, 2, and 4ℏΩ4\hbar\Omega model spaces. As the size of the model space increases, the amount of overbinding decreases significantly. This problem of overbinding in small model spaces is due to neglecting effective three- and four-body forces. Contributions of effective many-body forces are suppressed by using the Brueckner-Hartree-Fock single-particle Hamiltonian.Comment: 14 text pages and 4 figures (in postscript, available upon request). AZ-PH-TH/94-2

    Kinks in Discrete Light Cone Quantization

    Get PDF
    We investigate non-trivial topological structures in Discrete Light Cone Quantization (DLCQ) through the example of the broken symmetry phase of the two dimensional Ď•4\phi^4 theory using anti periodic boundary condition (APBC). We present evidence for degenerate ground states which is both a signature of spontaneous symmetry breaking and mandatory for the existence of kinks. Guided by a constrained variational calculation with a coherent state ansatz, we then extract the vacuum energy and kink mass and compare with classical and semi - classical results. We compare the DLCQ results for the number density of bosons in the kink state and the Fourier transform of the form factor of the kink with corresponding observables in the coherent variational kink state.Comment: 10 pages, 3 figure

    Hamiltonian light-front field theory within an AdS/QCD basis

    Full text link
    Non-perturbative Hamiltonian light-front quantum field theory presents opportunities and challenges that bridge particle physics and nuclear physics. Fundamental theories, such as Quantum Chromodynmamics (QCD) and Quantum Electrodynamics (QED) offer the promise of great predictive power spanning phenomena on all scales from the microscopic to cosmic scales, but new tools that do not rely exclusively on perturbation theory are required to make connection from one scale to the next. We outline recent theoretical and computational progress to build these bridges and provide illustrative results for nuclear structure and quantum field theory. As our framework we choose light-front gauge and a basis function representation with two-dimensional harmonic oscillator basis for transverse modes that corresponds with eigensolutions of the soft-wall AdS/QCD model obtained from light-front holography.Comment: To appear in the proceedings of Light-Cone 2009: Relativistic Hadronic and Particle Physics, July 8-13, 2009, Sao Jose dos Campos, Brazi

    Simple approximation for the starting-energy-independent two-body effective interaction with applications to 6Li

    Full text link
    We apply the Lee-Suzuki iteration method to calculate the linked-folded diagram series for a new Nijmegen local NN potential. We obtain an exact starting-energy-independent effective two-body interaction for a multi-shell, no-core, harmonic-oscillator model space. It is found that the resulting effective-interaction matrix elements can be well approximated by the Brueckner G-matrix elements evaluated at starting energies selected in a simple way. These starting energies are closely related to the energies of the initial two-particle states in the ladder diagrams. The ``exact'' and approximate effective interactions are used to calculate the energy spectrum of 6Li in order to test the utility of the approximate form.Comment: 15 text pages and 2 PostScript figures (available upon request). University of Arizona preprint, Number unassigne

    Novel NN interaction and the spectroscopy of light nuclei

    Get PDF
    Nucleon-nucleon (NN) phase shifts and the spectroscopy of A≤6A \le 6 nuclei are successfully described by an inverse scattering potential that is separable with oscillator form factors.Comment: 4 pages, 1 figure, 13 table

    Perturbative S-matrix in discretized light cone quantization of two-dimensional \phi^4 theory

    Full text link
    We study the S-matrix of two-dimensional \lambda\phi^4 theory in Discretized Light Cone Quantization and show how the correct continuum limit is reached for various processes in lowest order perturbation theory.Comment: title changed, clarifying statements adde

    Hamiltonian Light-Front Field Theory: Recent Progress and Tantalizing Prospects

    Full text link
    Fundamental theories, such as Quantum Electrodynamics (QED) and Quantum Chromodynamics (QCD) promise great predictive power addressing phenomena over vast scales from the microscopic to cosmic scales. However, new non-perturbative tools are required for physics to span from one scale to the next. I outline recent theoretical and computational progress to build these bridges and provide illustrative results for Hamiltonian Light Front Field Theory. One key area is our development of basis function approaches that cast the theory as a Hamiltonian matrix problem while preserving a maximal set of symmetries. Regulating the theory with an external field that can be removed to obtain the continuum limit offers additional possibilities as seen in an application to the anomalous magnetic moment of the electron. Recent progress capitalizes on algorithm and computer developments for setting up and solving very large sparse matrix eigenvalue problems. Matrices with dimensions of 20 billion basis states are now solved on leadership-class computers for their low-lying eigenstates and eigenfunctions.Comment: 8 pages with 2 figure
    • …
    corecore