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Abstract

We investigate non-trivial topological structures in discrete light cone quantization (DLCQ) through the example
broken symmetry phase of the two-dimensionalφ4 theory using antiperiodic boundary condition (APBC). We present evid
for degenerate ground states which is both a signature of spontaneous symmetry breaking and mandatory for the ex
kinks. Guided by a constrained variational calculation with a coherent state ansatz, we then extract the vacuum energ
mass and compare with classical and semi-classical results. We compare the DLCQ results for the number density of
the kink state and the Fourier transform of the form factor of the kink with corresponding observables in the coherent va
kink state.
 2004 Published by Elsevier B.V.Open access under CC BY license.
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1. Introduction

Motivated by the remarkable work of Rozows
and Thorn [1], we have recently investigated [2] t
broken symmetry phase of two-dimensionalφ4 theory
in DLCQ [3] with periodic boundary condition (PBC
without the zero momentum mode. Using a coher
state variational calculation as a guide, we extrac
the vacuum energy density and kink mass from
results of matrix diagonalization. We also presen
the Fourier transform of the form factor of the lowe
excitation as well as the number density of elemen
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constituents of that state. Since the zero momen
mode was dropped in these investigations [1,2],
lowest state appeared as a kink–antikink pair beca
of the periodic boundary condition which implies th
we are working in the sector with topological char
equal to zero. The results from these studies are
free from ambiguity at least in the finite volum
because of the potential role played by the constra
zero momentum mode. With antiperiodic bound
condition (APBC), the zero momentum mode is abs
and hence calculations are free from the ambig
created when it is simply neglected. With APBC o
expects the ground state to be a kink or an antikink

The quantum kink on the light front was address
first by Baacke [4] in the context of semi-classic
quantization. As Baacke indicated, light front quan
zation offers the advantage of preserving translatio
 license.
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invariance. To extract the kink mass in the class
theory he approximately diagonalized the mass
erator (M2 = P+P−). He pointed out the advantag
of light front quantization in handling the translatio
mode.

In this Letter we address the problem of the Fo
space description of the topological structure in qu
tum field theory in the context of kinks that appe
in the broken symmetry phase of two-dimensionalφ4

theory. As further background, it is worthwhile to r
call that the study of these objects in lattice field th
ory is also highly non-trivial [5,6]. Within our own ap
proach, we must qualify results by uncertainty due
unknown artifacts arising from discretization.

2. Notation and conventions

We start from the Lagrangian density

(1)L = 1

2
∂µφ∂µφ + 1

2
µ2φ2 − λ

4!φ
4.

The light front variables are defined byx± = x0 ± x1.
The Hamiltonian density

(2)P− = −1

2
µ2φ2 + λ

4!φ
4

defines the Hamiltonian

(3)P− =
∫

dx−P− ≡ L

2π
H,

whereL defines our compact domain−L � x− �
+L. Throughout this Letter we address the ene
spectrum ofH .

The longitudinal momentum operator is

(4)P+ = 1

2

+L∫
−L

dx−∂+φ∂+φ ≡ 2π

L
K,

whereK is the dimensionless longitudinal momentu
operator. The mass squared operatorM2 = P+P− =
KH .

In DLCQ with APBC, the field expansion has th
form

(5)Φ(x−) = 1√
4π

∑
n

1√
n

[
ane

−i nπL x− + a†
ne

i nπL x−]
.

Heren = 1/2,3/2, . . . .
The normal ordered Hamiltonian is given by

H = −µ2
∑
n

1

n
a†
nan

+ λ

4π

∑
k�l,m�n

1

N2
kl

1√
klmn

a
†
ka

†
l anamδk+l,m+n

+ λ

4π

∑
k,l�m�n

1

N2
lmn

[a†
kalaman + a†

na
†
ma

†
l ak]

(6)× δk,l+m+n

with

Nlmn = 1, l �= m �= n,

= √
2!, l = m �= n, l �= m = n,

(7)= √
3!, l = m = n,

and

Nkl = 1, k �= l,

(8)= √
2!, k = l.

3. Coherent state calculations

Rozowsky and Thorn [1] carried out a cohere
state variational calculation for DLCQ in the case
PBC without the zero momentum mode. In this sect
we carry out the analogous calculation for APB
The result of this calculation, being semi-classical
especially reliable in the weak coupling region and
can use its functional form to extract the kink ma
from the numerical results of matrix diagonalization

Choose as a trial state, the coherent state

(9)|α〉 =N e
∑

n αna
†
n |0〉,

whereN is a normalization factor.
With APBC we have

(10)
〈α|φ(x−)|α〉

〈α|α〉 = 1√
4π

f (x−)

with

(11)

f (x−) =
N∑

m=1

1√
m − 1/2

[
α
m− 1

2
e−i πL (m− 1

2 )x
−

+ α∗
m− 1

2
ei

π
L (m− 1

2)x
−]

.
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Minimizing the expectation value of the Hamiltonia
we obtain

(12)fmin = ±
√

24πµ2

λ
= ±

√
3

g
.

Set

f (x−) =
√

3

g
, 0< x− < L,

(13)= −
√

3

g
, −L< x− < 0.

Then we get

(14)α
m− 1

2
=

√
3

g

i

π

1√
m − 1

2

, m = 1,2,3, . . . ,

and

(15)f (x−) = 2

π

√
3

g

∑
j

1

j
sin

jπx−

L
,

wherej = 1/2,3/2,5/2, etc. The number density o
bosons with momentum fractionx (= j/K) is given
by

(16)χ(x) = 〈α|a†
j aj |α〉

〈α|α〉 = α2
j ,

whereαj ∼ 1/
√
j .

In this case we get

(17)
1

〈α|α〉
2π

L

∫
dx−〈α|φ2(x−)|α〉 = 8

π2

3

g

∑
j

1

j2 ,

wherej = 1,3,5, . . . . In the unconstrained variation
calculation for PBC, the expectation value of the lo
gitudinal momentum operator is infinite sincef (x−)

is discontinous atx− = 0. To cure this deficiency, Ro
zowsky and Thorn performed a constrained variatio
calculation. Here we provide an outline of the an
ogous calculation for APBC. For constrained var
tional calculation in the case of PBC with the inclusi
of a zero mode, see Ref. [7].

With 〈K〉 = L/(2π)〈α|P+|α〉/〈α|α〉, and f ′ =
∂f (x−)/∂x− we have

(18)K = L

4π2

+L∫
dx−(f ′)2.
−L
Minimizing

1

µ2

〈α|Hβ |α〉
〈α|α〉

(19)

= 1

L

+L∫
−L

dx−
[
β

{
L2

4π2 (f
′)2 − 〈K〉L

}

− 1

4
f 2 + λ

192µ2
f 4

]
we obtain

(20)−2β
L2

4π2

∂2f

∂(x−)2
− 1

2
f + λ

48πµ2
f 3 = 0.

Putting f (x−) = f0F(u) where the variableu =
(2x− + L)/LK̄ with

(21)K̄ = K̄(k) =
1∫

0

dt
(
1− t2

)− 1
2
(
1− k2t2

)− 1
2 ,

we have,

(22)
∂2F

∂u2 = − 1

4K̄2β
F + λf 2

0

96K̄2βπµ2
F 3.

Comparing with the differential equation satisfied
the Jacobi elliptic function sn(u, k), namely,

(23)

∂2 sn(u, k)

∂u2 = −(
1+ k2)sn(u, k) + 2k2 sn3(u, k),

we get

(24)f (x−) = f0 sn

(
x−

L
K̄, k

)
with

(25)β = 1

4K̄2(1+ k2)
and f 2

0 = 48k2πµ2

λ(1+ k2)
.

Note that we have imposed APBC on the solution.
explicit calculation we get

(26)〈K〉 = 8µ2

πλ
K̄

[
E(k) − 1− k2

1+ k2
K̄(k)

]
with

(27)E(k) =
1∫

0

dt

√
1− k2t2√
1− t2
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〈α|H |α〉
〈α|α〉 = − 24k2πµ4

λ(1+ k2)2 + 64µ6

λ2(1+ k2)〈K〉

(28)

×
[
E(k) − 1− k2

1+ k2 K̄(k)

]2

.

In the〈K〉 → ∞ limit, k → 1 and we get

(29)
〈α|H |α〉
〈α|α〉 = −6πµ4

λ
+ 32µ6

λ2〈K〉 .
Interpreting the state|α〉 to be a kink state, we identif
the first term as the vacuum energy density which
the classical vacuum energy density. The second t
is identified asM2

kink/〈K〉. Then we get the classica
kink massMkink = 4

√
2µ3/λ.

Using the Fourier expansion [8]

(30)

sn(u, k) = 1

K̄

2π√
k2

∞∑
m=1

qm− 1
2

1− q2m−1 sin
(2m − 1)πu

2K̄
,

whereq = exp(−πK̄(1− k2)/K̄(k2)) we have

(31)

f (x−) = 2π

K̄

√
48πµ2

λ(1+ k2)

∑
j

qj

1− q2j sin
jπx−

L
.

In the limit k2 → 1, using

q → lim
k2→1

(
1− π

K̄(k2 − 1)

K̄(k2)

)

so that(1− q2m−1)K̄ → (2m− 1)π2/2 sinceK̄(0) =
π/2, it is readily verified that in the limitk2 → 1, the
expression forf (x−) in the constrained variationa
calculation given by Eq. (31) goes over to that
the unconstrained variational calculation given
Eq. (15).

4. Fourier transform of the form factor in DLCQ

An observable that yields considerable insight
the spatial structure of the topological object is
Fourier transform of its form factor. We compute t
Fourier transform of the form factor of the lowe
state which, according to Goldstone and Jackiw
in the weak coupling (static) limit, represents t
kink profile. Let |K〉 and |K ′〉 denote this state
with momentaK and K ′. In the continuum the
ory,

(32)

+∞∫
−∞

dq+ exp

{
− i

2
q+a

}
〈K ′|Φ(x−)|K〉 = φc(x

− − a).

In DLCQ, we diagonalize the Hamiltonian for a give
K = L/(2π)P+. For the computation of the form
factor, we need the same state at differentK val-
ues sinceK ′ = K + q . We proceed as follows. W
diagonalize the Hamiltonian, say, atK = 41 (even
particle sector). We diagonalize the Hamiltonian
the neighboringK values, K = 40.5, 41.5, 39.5,
42.5, 38.5, 43.5, 37.5, 44.5, 36.5, 45.5 (odd pa
cle sectors). In this particular example, the dim
sionless momentum transfer ranges from−4.5 to
+4.5. If K is large enough to be near the cont
uum, then, in the spontaneous symmetry broken ph
with degenerate even and odd states, we can be
fident that all these lowest states correspond to
same physical state observed at different longitu
nal momenta. The test that the states are dege
ate is that they have the sameM2, so the eigenval
ues of H fall on a linear trajectory as a functio
of 1/K.

We proceed to compute the matrix element of
field operator between the lowest state atK = 40
and the other specified values ofK and sum the
amplitudes which corresponds to the choice of
shift parametera = 0. In summing the amplitudes
we need to be careful about the phases. First
note thatK is a conserved quantity, so eigenfun
tions at differentK values have an independent ar
trary complex phase factor. To fix the phases, we
cept the guidance of the coherent state analysis.
set the overall sign of the lowest states for allK val-
ues such that the matrix elements〈K + n|a†

n|K〉 =
positive and〈K − n|an|K〉 = negative. In addition
there is one overall complex phase that we apply
the profile function so that it is real at the boun
aries. That the sum of all terms for the profile fun
tion produces the shape of a kink, with very sm
imaginary component, is nevertheless a non-trivial
sult. It is a further non-trivial result that the magn
tude of the kink represents a physically sensible
sult.
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5. Numerical results

With APBC, for integer (half integer) values o
K we have even (odd) number of particles. T
dimensionality of the matrix in the even and o
sectors for different values ofK is presented in
Table 1. All results presented here were obtained
small clusters of computers (� 15 processors) usin
the many fermion dynamics (MFD) code adapted
bosons [10]. The Lanczos diagonalization method
used in a highly scalable algorithm allowing us
proceed to sufficiently high values ofK to numerically
observe the phenomena we sought.

Since the Hamiltonian exhibits theφ → −φ sym-
metry, the even and odd particle sectors of the the
are decoupled. With a positiveµ2, at weak coupling
the lowest state in the odd particle sector is a sin
particle carrying all the momentum. In the even p
ticle sector, the lowest state consists of two partic
Thus for massive particles, there is a distinct mass
between odd and even particle sectors. With a nega
µ2, at weak coupling, the situation is drastically diffe
ent. Now, the lowest states in the odd and even par
sectors consist of the maximum number of partic
carrying the lowest allowed momentum. Thus, in
continuum limit, the possibility arises that the states
the even and odd particle sectors become degene
A clear signal of SSB is the degeneracy of the sp
trum in the even and odd particle sectors. Thus a
nite K, we can compare the spectra for an integeK

value (even particle sector) and its neighboring half
tegerK value (odd particle sector) and look for dege
erate states. In Fig. 1 we show the lowest four ene
eigenvalues in the broken symmetry phase for the e
and odd particle sectors forλ = 1.0 as a function of
1/K. The points represent results at half integer inc
ments inK fromK = 10 toK = 55. The overall trend
is towards smoother behavior at higherK. There is an
apparent small oscillation superimposed on a ge
ally linear trend for each state. We believe that the
cillations represent an artifact of discretization. The
oscillations decrease with increasingK. The smooth
curves in Fig. 1 are linear fits to the eigenvalues in
range fromK = 40 toK = 55 constrained to have th
same intercept.

With guidance from the constrained variation
calculation, see Eq. (29), we can extract the k
mass from the linear fit to the DLCQ data for t
.

Fig. 1. Lowest four eigenvalues for even and odd sectors
function of 1/K for λ = 1.0. The inset shows the details over t
range 40� K � 55. The discrete points are the DLCQ eigenvalu
while the straight lines are the linear fits to the 40� K � 55 data
constrained to have the same intercept.

Table 1
Dimensionality of the Hamiltonian matrix in odd and even parti
sectors with anti periodic boundary condition

Odd sector Even sector

K Dimension K Dimension

15.5 295 16 336
31.5 12 839 32 14 219
39.5 61 316 40 67 243
44.5 151 518 45 165 49
49.5 358 000 50 389 25
54.5 813 177 55 880 96

Table 2
Comparison of vacuum energy density and soliton mass extra
from the continuum limit of our DLCQ data, with classical resul
For soliton mass, the semi-classical result [11] is also shown

λ Vacuum energy Soliton mass

Classical DLCQ Classical Semi-classical DLCQ

1.0 −18.85 −18.73± 0.05 5.66 5.19 5.3± 0.2

ground state eigenvalue. We fit theλ = 1.0 data
in the range 40� K � 55 to a linear form (C1 +
C2/K). There are two reasons for this choice: (1) t
is the maximum amount of data for which theK-
artifacts seem reasonably absent; (2) independen
and extrapolations from the four lowest eigenval
are very close to each other atK → ∞. We quoteC1

as the vacuum energy density andC
1/2
2 as the kink
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Fig. 2. The number densityχ(x) for even (K = 55.0) and odd
(K = 54.5) sectors forλ = 1 compared with unconstrained an
constrained (〈K〉 = 55) variational results.

mass in Table 2. We obtain the uncertainties from
spread in these results arising from constrained fit
subsets of the data in this same range. For compar
the corresponding classical values (classical vacu
energy densityE = −6πµ4/λ) are also presented. Th
agreement appears reasonable.

Next we examine the behavior of the number d
sity χ(x) for the kink state. In the broken phase, t
ground states in the even and odd particle sec
are degenerate in the continuum limit. In Fig. 2
showχ(x) for K = 55 andK = 54.5 for λ = 1. For
this coupling the number densities for even and o
sectors are almost identical to each other indica
of degenerate states. In Fig. 2, we also compare
DLCQ number density with that predicted by the u
constrained and constrained variational calculatio
At sufficiently largeK and lowλ, they appear to agre
at a level which is reasonable for the comparison o
quantal result with a semi-classical result.

Following Goldstone and Jackiw, we have calc
lated the Fourier transform of the form factor of t
kink state in DLCQ at weak coupling. In Fig. 3(a) w
show the profile calculated in DLCQ forλ = 1 at three
selectedK values. It is clear that atλ = 1 the pro-
file is that of a kink which appears reasonably co
verged with increasingK. In Fig. 3(b) we compare
the K = 41 DLCQ profile with that of a constraine
variational coherent state calculation of Eq. (31) w
〈K〉 = 41. In the unconstrained variational calcu
,

Fig. 3. Fourier transform of the kink form factor atλ = 1; (a) results
for K = 24,32, and 41 each obtained with DLCQ eigenstates fr
11 values ofK centered on the designatedK value; (b) comparison
of DLCQ profile atK = 41 with constrained variational result wit
〈K〉 = 41.

tion, this function is discontinuous atx− = 0 and〈K〉,
the expectation value of the dimensionless longitu
nal momentum operator, is infinite. In the variation
calculation where〈K〉 is constrained to be finite, th
kink profile is a smooth function ofx− as seen in
Fig. 3(b). In the limit〈K〉 → ∞, the kink profile from
constrained variational calculation approaches tha
the unconstrained case. For eachK shown, we utilize
11 sets of DLCQ results to construct the profile fun
tion. Thus, forK = 41 we employ results atK = 41
and atK = 36.5 through 45.5 in unit steps.

To summarize, we have demonstrated the existe
of degenerate lowest eigenstates in two-dimensio
φ4 theory in DLCQ with APBC. The degenerac
of energy levels is both a signature of spontane
symmetry breaking and essential for the existenc
kinks. Using the constrained variational calculat
as a guide, we have extracted the vacuum en
density and the kink mass forλ = 1. We have extracte
the number density of bosons in the kink state a
compared it with predictions from coherent sta
variational calculations. We have also calculated
Fourier transform of the form factor of the kink an
compared it with its counterpart in the variation
approach. We interpret these results as indica
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of the viability of DLCQ for addressing non-trivia
phenomena in quantum field theory.
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