1,831 research outputs found
Spin Resolution of the Electron-Gas Correlation Energy: Positive same-spin contribution
The negative correlation energy per particle of a uniform electron gas of
density parameter and spin polarization is well known, but its
spin resolution into up-down, up-up, and down-down contributions is not.
Widely-used estimates are incorrect, and hamper the development of reliable
density functionals and pair distribution functions. For the spin resolution,
we present interpolations between high- and low-density limits that agree with
available Quantum Monte Carlo data. In the low-density limit for ,
we find that the same-spin correlation energy is unexpectedly positive, and we
explain why. We also estimate the up and down contributions to the kinetic
energy of correlation.Comment: new version, to appear in PRB Rapid Communicatio
First-principles study of the polar O-terminated ZnO surface in thermodynamic equilibrium with oxygen and hydrogen
Using density-functional theory in combination with a thermodynamic formalism
we calculate the relative stability of various structural models of the polar
O-terminated (000-1)-O surface of ZnO. Model surfaces with different
concentrations of oxygen vacancies and hydrogen adatoms are considered.
Assuming that the surfaces are in thermodynamic equilibrium with an O2 and H2
gas phase we determine a phase diagram of the lowest-energy surface structures.
For a wide range of temperatures and pressures we find that hydrogen will be
adsorbed at the surface, preferentially with a coverage of 1/2 monolayer. At
high temperatures and low pressures the hydrogen can be removed and a structure
with 1/4 of the surface oxygen atoms missing becomes the most stable one. The
clean, defect-free surface can only exist in an oxygen-rich environment with a
very low hydrogen partial pressure. However, since we find that the
dissociative adsorption of molecular hydrogen and water (if also the
Zn-terminated surface is present) is energetically very preferable, it is very
unlikely that a clean, defect-free (000-1)-O surface can be observed in
experiment.Comment: 10 pages, 4 postscript figures. Uses REVTEX and epsf macro
Some properties of the newly observed X(1835) state at BES
Recently the BES collaboration has announced observation of a resonant state
in the spectrum in
decay. Fitting the data with a state, the mass is determined to be
1833.7 MeV with statistic significance. This state is consistent
with the one extracted from previously reported threshold
enhancement data in . We study the properties of
this state using QCD anomaly and QCD sum rules assuming X(1835) to be a
pseudoscalar and show that it is consistent with data. We find that this state
has a sizeable matrix element leading to branching ratios
of and for
and for , respectively.
Combining the calculated branching ratio of and data on
threshold enhancement in , we determine the
coupling for interaction. We finally study branching ratios of
other decay modes. We find that can provide useful
tests for the mechanism proposed.Comment: 13 pages, 3 figures. The final version to appear at EPJ
Antagonists of Calcium Fluxes and Calmodulin Block Activation of the p21-Activated Protein Kinases in Neutrophils
Neutrophils stimulated with fMLP or a variety of other chemoattractants that bind to serpentine receptors coupled to heterotrimeric
G proteins exhibit rapid activation of two p21-activated protein kinases (Paks) with molecular masses of ~63 and 69 kDa
(y- and a-Pak). Previous studies have shown that products of phosphatidylinositol 3-kinase and tyrosine kinases are required for
the activation of Paks. We now report that a variety of structurally distinct compounds which interrupt different stages in
calcium/calmodulin (CaM) signaling block activation of the 63- and 69-kDa Paks in fMLP-stimulated neutrophils. These antagonists
included selective inhibitors of phospholipase C (1-[6-((17ß-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl]-1H-pyrrole-
2,5-dione), the intracellular Ca^(2+) channel (8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate), CaM (N-(6-aminohexyl)-5-
chloro-1-naphthalenesulfonamide; N-(4-aminobutyl)-5-chloro-1-naphthalenesulfonamide; trifluoperazine), and CaM-activated
protein kinases (N-[2-(N-(chlorocinnamyl)-N-methylaminomethyl)phenyl]-N-[2-hydroxyethyl]-4-methoxybenzenesulfonamide).
This inhibition was dose-dependent with IC50 values very similar to those that interrupt CaM-dependent reactions in vitro. In
contrast, less active analogues of these compounds (1-[6-((17ß-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl]-2,5-pyrrolidinedione;
N-(6-aminohexyl)-1-naphthalenesulfonamide; N-(4-aminobutyl)-1-naphthalenesulfonamide; promethazine; 2-[N-(4-
methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzyl-amine]) did not affect activation of Paks in these cells.
CaM antagonists (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide; trifluoperazine), but not their less-active analogues (N-
(6-aminohexyl)-1-naphthalenesulfonamide; promethazine), were also found to block activation of the small GTPases Ras and Rac
in stimulated neutrophils along with the extracellular signal-regulated kinases. These data strongly suggest that the Ca^(2+)/CaM
complex plays a major role in the activation of a number of enzyme systems in neutrophils that are regulated by small
GTPases
Composition and structure of the RuO2(110) surface in an O2 and CO environment: implications for the catalytic formation of CO2
The phase diagram of surface structures for the model catalyst RuO2(110) in
contact with a gas environment of O2 and CO is calculated by density-functional
theory and atomistic thermodynamics. Adsorption of the reactants is found to
depend crucially on temperature and partial pressures in the gas phase.
Assuming that a catalyst surface under steady-state operation conditions is
close to a constrained thermodynamic equilibrium, we are able to rationalize a
number of experimental findings on the CO oxidation over RuO2(110). We also
calculated reaction pathways and energy barriers. Based on the various results
the importance of phase coexistence conditions is emphasized as these will lead
to an enhanced dynamics at the catalyst surface. Such conditions may actuate an
additional, kinetically controlled reaction mechanism on RuO2(110).Comment: 12 pages including 8 figure files. Submitted to Phys. Rev. B. Related
publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm
Direct Minimization Generating Electronic States with Proper Occupation Numbers
We carry out the direct minimization of the energy functional proposed by
Mauri, Galli and Car to derive the correct self-consistent ground state with
fractional occupation numbers for a system degenerating at the Fermi level. As
a consequence, this approach enables us to determine the electronic structure
of metallic systems to a high degree of accuracy without the aid of level
broadening of the Fermi-distribution function. The efficiency of the method is
illustrated by calculating the ground-state energy of C and Si
molecules and the W(110) surface to which a tungsten adatom is adsorbed.Comment: 4 pages, 4 figure
Correlation energy of a two-dimensional electron gas from static and dynamic exchange-correlation kernels
We calculate the correlation energy of a two-dimensional homogeneous electron
gas using several available approximations for the exchange-correlation kernel
entering the linear dielectric response of the system.
As in the previous work of Lein {\it et al.} [Phys. Rev. B {\bf 67}, 13431
(2000)] on the three-dimensional electron gas, we give attention to the
relative roles of the wave number and frequency dependence of the kernel and
analyze the correlation energy in terms of contributions from the plane. We find that consistency of the kernel with the electron-pair
distribution function is important and in this case the nonlocality of the
kernel in time is of minor importance, as far as the correlation energy is
concerned. We also show that, and explain why, the popular Adiabatic Local
Density Approximation performs much better in the two-dimensional case than in
the three-dimensional one.Comment: 9 Pages, 4 Figure
Growing Correlation Length on Cooling Below the Onset of Caging in a Simulated Glass-Forming Liquid
We present a calculation of a fourth-order, time-dependent density
correlation function that measures higher-order spatiotemporall correlations of
the density of a liquid. From molecular dynamics simulations of a glass-forming
Lennard-Jones liquid, we find that the characteristic length scale of this
function has a maximum as a function of time which increases steadily beyond
the characteristic length of the static pair correlation function in the
temperature range approaching the mode coupling temperature from above
Genome-Wide Association of Kidney Traits in Hispanics/Latinos Using Dense Imputed Whole-Genome Sequencing Data: The Hispanic Community Health Study/Study of Latinos
Background: Genetic factors that influence kidney traits have been understudied for low-frequency and ancestry-specific variants. Methods: This study used imputed whole-genome sequencing from the Trans-Omics for Precision Medicine project to identify novel loci for estimated glomerular filtration rate and urine albumin-to-creatinine ratio in up to 12 207 Hispanics/Latinos. Replication was performed in the Women's Health Initiative and the UK Biobank when variants were available. Results: Two low-frequency intronic variants were associated with estimated glomerular filtration rate (rs58720902 at AQR, minor allele frequency=0.01, P=1.6×10-8) or urine albumin-to-creatinine ratio (rs527493184 at ZBTB16, minor allele frequency=0.002, P=1.1×10-8). An additional variant at PRNT (rs2422935, minor allele frequency=0.54, P=2.89×10-8) was significantly associated with estimated glomerular filtration rate in meta-analysis with replication samples. We also identified 2 known loci for urine albumin-to-creatinine ratio (BCL2L11 rs116907128, P=5.6×10-8and HBB rs344, P=9.3×10-11) and validated 8 loci for urine albumin-to-creatinine ratio previously identified in the UK Biobank. Conclusions: Our study shows gains in gene discovery when using dense imputation from multi-ethnic whole-genome sequencing data in admixed Hispanics/Latinos. It also highlights limitations in genetic research of kidney traits, including the lack of suitable replication samples for variants that are more common in non-European ancestry and those at low frequency in populations
News from the Muon (g-2) Experiment at BNL
The magnetic moment anomaly a_mu = (g_mu - 2) / 2 of the positive muon has
been measured at the Brookhaven Alternating Gradient Synchrotron with an
uncertainty of 0.7 ppm. The new result, based on data taken in 2000, agrees
well with previous measurements. Standard Model evaluations currently differ
from the experimental result by 1.6 to 3.0 standard deviations.Comment: Talk presented at RADCOR - Loops and Legs 2002, Kloster Banz,
Germany, September 8-13 2002, to be published in Nuclear Physics B (Proc.
Suppl.); 5 pages, 3 figure
- …