56 research outputs found

    Size Doesn't Matter: Towards a More Inclusive Philosophy of Biology

    Get PDF
    notes: As the primary author, O’Malley drafted the paper, and gathered and analysed data (scientific papers and talks). Conceptual analysis was conducted by both authors.publication-status: Publishedtypes: ArticlePhilosophers of biology, along with everyone else, generally perceive life to fall into two broad categories, the microbes and macrobes, and then pay most of their attention to the latter. ‘Macrobe’ is the word we propose for larger life forms, and we use it as part of an argument for microbial equality. We suggest that taking more notice of microbes – the dominant life form on the planet, both now and throughout evolutionary history – will transform some of the philosophy of biology’s standard ideas on ontology, evolution, taxonomy and biodiversity. We set out a number of recent developments in microbiology – including biofilm formation, chemotaxis, quorum sensing and gene transfer – that highlight microbial capacities for cooperation and communication and break down conventional thinking that microbes are solely or primarily single-celled organisms. These insights also bring new perspectives to the levels of selection debate, as well as to discussions of the evolution and nature of multicellularity, and to neo-Darwinian understandings of evolutionary mechanisms. We show how these revisions lead to further complications for microbial classification and the philosophies of systematics and biodiversity. Incorporating microbial insights into the philosophy of biology will challenge many of its assumptions, but also give greater scope and depth to its investigations

    Influences de la sylviculture sur le risque de dégùts biotiques et abiotiques dans les peuplements forestiers

    Full text link

    Depositional environments and iron ooid formation in condensed sections (Callovian Oxfordian, South-eastern part of the Paris basin, France)

    No full text
    Carbonate platforms across Western Europe were superseded at the MiddleUpper Jurassic (CallovianOxfordian) boundary either by alternating marllimestone and widespread marl deposits or by condensed sections containing iron ooids. The characteristics of marine condensed sections in the south-eastern part of the Paris Basin (France) and their distribution pattern are examined here, and a model of iron ooid formation is developed. Iron ooids are found from the shoreface to the offshore zone. They are most abundant in the median-to-distal offshore transition zone, where they originally formed. They also occur commonly, albeit often as reworked grains, in the proximal offshore zone, to which they were transported. The contemporaneous, thick, predominantly marl sections that occur laterally are devoid of iron ooids and were deposited in deeper settings (distal offshore zone). The iron ooids are composed of goethite. Typically, they have a nucleus made up of a clump of goethite crystals and a laminated cortex. Three distinctive nanostructures are identified in the cortex laminae: (i) a nanograined crystalline structure typical of primary goethite; (ii) a secondary nanoflaked structure thought to have formed mechanically by reorientation of the goethite crystals; and (iii) a coalesced structure acquired by subsequent diagenetic recrystallization. The iron ooids formed successively (i) by lamina growth when goethite precipitated in the surface layer of the sediment (nanograined structure) and (ii) by interruption of growth when the ooids were remobilized by hydrodynamic agents, as reflected by the flaked nanostructure; (iii) these two nanostructures were sometimes transformed into a coalesced structure by recrystallization when ooids were burie
    • 

    corecore