10 research outputs found

    The mmsA locus of Streptococcus pneumoniae encodes a RecG-like protein involved in DNA repair and in three-strand recombination.

    No full text
    We describe the characterization of a mutant strain of Streptococcus pneumoniae previously isolated on the basis of its sensitivity to Methyl Methane Sulphonate (MMS). The mutant strain also exhibited increased sensitivity to UV light and to X-rays, together with a reduced capacity for recombination and Hex-mediated generalized mismatch repair. We show that the original mutant contains two unlinked mutations in the mmsA and in the pms genes. The mmsA wild-type region was cloned and the nucleotide sequence of the mmsA gene was determined. mmsA encodes a polypeptide of 671 amino acids related to a large family of DNA-RNA helicases, with the highest similarity to Escherichia coli RecG, a protein involved in the branch migration of Holliday junctions. A plasmid carrying the intact mmsA coding region was shown to restore UV resistance to E. coli recG mutant strains. An mmsA-null mutant constructed by insertion of a chloramphenicol-resistance gene exhibited a 25-fold reduction in recombination during transformation. We suggest that MmsA recognizes and branch migrates three-strand transformation intermediates to extend donor-recipient heteroduplex regions. The mmsA-null mutant exhibited the other phenotypes of the original mutant, apart from mismatch-repair deficiency and, in addition, an alteration in colony-forming ability was noticed. In the pms mutant background, all phenotypes caused by the mmsA mutation were attenuated. Therefore, the pms mutation, although it affected mismatch repair and, to some extent, DNA repair and recombination, acted as a suppressor of the mmsA mutation

    Streptococcus pneumoniae, le transformiste.

    No full text
    International audienc

    Bacterial transformation: distribution, shared mechanisms and divergent control.

    No full text
    International audienc

    The puzzle of zmpB and extensive chain formation, autolysis defect and non-traslocation of choline-binding proteins in Streptococcus pneumoniae.

    No full text
    Choline-binding proteins (CBPs) from Streptococcus pneumoniae are involved in several important processes. Inactivation of zmpB, a gene that encodes a surface-located putative zinc metalloprotease, in a S. pneumoniae serotype 4 strain was recently reported to reveal a composite phenotype, including extensive chain formation, lysis defect and transformation deficiency. This phenotype was associated with the lack of surface expression of several CBPs, including the major autolysin LytA. LytA, normally 36 kDa in size, was reported to form an SDS-resistant 80 kDa complex with CinA. ZmpB was therefore proposed to control translocation of CBPs to the surface, possibly through the proteolytic release of CBPs (and RecA) from CinA. Based on the use of 12 independent mariner insertions in the zmpB gene of the well-characterized R6 laboratory strain, we could not confirm several of these observations. Our zmpB mutants: (i) did not form chains; (ii) lysed normally in the presence of deoxycholate, which indicates the presence of a functional autolysin; (iii) transformed at normal frequency; and (iv) contained bona fide CinA and LytA species. Polymorphism of ZmpB between R6 and the serotype 4 isolate could not account for the discrepancy, as inactivation of zmpB (through replacement by transposon-inactivated zmpB R6 alleles) in the latter strain did not affect separation of daughter cells and autolysis. The conflicting observations could be explained by our finding that the reportedly serotype 4 zmpB 'mutant' differed from its S. pneumoniae parent in lacking capsule and in exhibiting characteristic traits of the Streptococcus viridans group, including resistance to optochin

    The puzzle of zmpB and extensive chain formation, autolysis defect and non-translocation of choline-binding proteins in Streptococcus pneumoniae

    No full text
    Choline-binding proteins (CBPs) from Streptococcus pneumoniae are involved in several important processes. Inactivation of zmpB, a gene that encodes a surface-located putative zinc metalloprotease, in a S. pneumoniae serotype 4 strain was recently reported to reveal a composite phenotype, including extensive chain formation, lysis defect and transformation deficiency. This phenotype was associated with the lack of surface expression of several CBPs, including the major autolysin LytA. LytA, normally 36 kDa in size, was reported to form an SDS-resistant 80 kDa complex with CinA. ZmpB was therefore proposed to control translocation of CBPs to the surface, possibly through the proteolytic release of CBPs (and RecA) from CinA. Based on the use of 12 independent mariner insertions in the zmpB gene of the well-characterized R6 laboratory strain, we could not confirm several of these observations. Our zmpB mutants: (i) did not form chains; (ii) lysed normally in the presence of deoxycholate, which indicates the presence of a functional autolysin; (iii) transformed at normal frequency; and (iv) contained bona fide CinA and LytA species. Polymorphism of ZmpB between R6 and the serotype 4 isolate could not account for the discrepancy, as inactivation of zmpB (through replacement by transposon-inactivated zmpB R6 alleles) in the latter strain did not affect separation of daughter cells and autolysis. The conflicting observations could be explained by our finding that the reportedly serotype 4 zmpB 'mutant' differed from its S. pneumoniae parent in lacking capsule and in exhibiting characteristic traits of the Streptococcus viridans group, including resistance to optochin

    Dopage (rationalité économique du)

    Get PDF
    La recherche économique face au problÚme du dopage. Tentative d'analyse du comportement du sportif qui se dope : l'hypothÚse de la rationalité ou de 'l'homo oeconomicus

    Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils

    No full text
    Heavy metal pollution of soil is a significant environmental problem and has its negative impact on human health and agriculture. Rhizosphere, as an important interface of soil and plant, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes, and therefore, have potential to enhance phytoremediation processes. Phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria have received more and more attention. This article paper reviews some recent advances in effect and significance of rhizobacteria in phytoremediation of heavy metal contaminated soils. There is also a need to improve our understanding of the mechanisms involved in the transfer and mobilization of heavy metals by rhizobacteria and to conduct research on the selection of microbial isolates from rhizosphere of plants growing on heavy metal contaminated soils for specific restoration programmes
    corecore