6 research outputs found

    Low-intensity repetitive magnetic stimulation lowers action potential threshold and increases spike firing in layer 5 pyramidal neurons in vitro

    Get PDF
    Repetitive transcranial magnetic stimulation (rTMS) has become a popular method of modulating neural plasticity in humans. Clinically, rTMS is delivered at high intensities to modulate neuronal excitability. While the high-intensity magnetic field can be targeted to stimulate specific cortical regions, areas adjacent to the targeted area receive stimulation at a lower intensity and may contribute to the overall plasticity induced by rTMS. We have previously shown that low-intensity rTMS induces molecular and structural plasticity in vivo, but the effects on membrane properties and neural excitability have not been investigated. Here we investigated the acute effect of low-intensity repetitive magnetic stimulation (LI-rMS) on neuronal excitability and potential changes on the passive and active electrophysiological properties of layer 5 pyramidal neurons in vitro. Whole-cell current clamp recordings were made at baseline prior to subthreshold LI-rMS (600 pulses of iTBS, n = 9 cells from 7 animals) or sham (n = 10 cells from 9 animals), immediately after stimulation, as well as 10 and 20 min post-stimulation. Our results show that LI-rMS does not alter passive membrane properties (resting membrane potential and input resistance) but hyperpolarises action potential threshold and increases evoked spike-firing frequency. Increases in spike firing frequency were present throughout the 20 min post-stimulation whereas action potential (AP) threshold hyperpolarization was present immediately after stimulation and at 20 min post-stimulation. These results provide evidence that LI-rMS alters neuronal excitability of excitatory neurons. We suggest that regions outside the targeted region of high-intensity rTMS are susceptible to neuromodulation and may contribute to rTMS-induced plasticity

    Reinforcement determines the timing dependence of corticostriatal synaptic plasticity in vivo

    Get PDF
    Plasticity at synapses between the cortex and striatum is considered critical for learning novel actions. However, investigations of spike-timing-dependent plasticity (STDP) at these synapses have been performed largely in brain slice preparations, without consideration of physiological reinforcement signals. This has led to conflicting findings, and hampered the ability to relate neural plasticity to behavior. Using intracellular striatal recordings in intact rats, we show here that pairing presynaptic and postsynaptic activity induces robust Hebbian bidirectional plasticity, dependent on dopamine and adenosine signaling. Such plasticity, however, requires the arrival of a reward-conditioned sensory reinforcement signal within 2 s of the STDP pairing, thus revealing a timing-dependent eligibility trace on which reinforcement operates. These observations are validated with both computational modeling and behavioral testing. Our results indicate that Hebbian corticostriatal plasticity can be induced by classical reinforcement learning mechanisms, and might be central to the acquisition of novel actions

    Striatal mRNA expression patterns underlying peak dose L-DOPA-induced dyskinesia in the 6-OHDA hemiparkinsonian rat

    Get PDF
    L-DOPA is the primary pharmacological treatment for relief of the motor symptoms of Parkinson’s disease (PD). With prolonged treatment (⩾5 years) the majority of patients will develop abnormal involuntary movements as a result of L-DOPA treatment, known as L-DOPA-induced dyskinesia. Understanding the underlying mechanisms of dyskinesia is a crucial step toward developing treatments for this debilitating side effect. We used the 6-hydroxydopamine (6-OHDA) rat model of PD treated with a three-week dosing regimen of L-DOPA plus the dopa decarboxylase inhibitor benserazide (4 mg/kg and 7.5 mg/kg s.c., respectively) to induce dyskinesia in 50% of individuals. We then used RNA-seq to investigate the differences in mRNA expression in the striatum of dyskinetic animals, non-dyskinetic animals, and untreated parkinsonian controls at the peak of dyskinesia expression, 60 min after L-DOPA administration. Overall, 255 genes were differentially expressed; with significant differences in mRNA expression observed between all three groups. In dyskinetic animals 129 genes were more highly expressed and 14 less highly expressed when compared with non-dyskinetic and untreated parkinsonian controls. In L-DOPA treated animals 42 genes were more highly expressed and 95 less highly expressed when compared with untreated parkinsonian controls. Gene set cluster analysis revealed an increase in expression of genes associated with the cytoskeleton and phosphoproteins in dyskinetic animals compared with non-dyskinetic animals, which is consistent with recent studies documenting an increase in synapses in dyskinetic animals. These genes may be potential targets for drugs to ameliorate L-DOPA-induced dyskinesia or as an adjunct treatment to prevent their occurrence

    Dopamine-Glutamate Interactions in Reward-Related Incentive Learning

    No full text
    corecore