337 research outputs found

    Quark and Lepton Mass Patterns and the Absolute Neutrino Mass Scale

    Get PDF
    We investigate what could be learned about the absolute scale of neutrino masses from comparisons among the patterns within quark and lepton mass hierarchies. First, we observe that the existing information on neutrino masses fits quite well to the unexplained, but apparently present regularities in the quark and charged lepton sectors. Second, we discuss several possible mass patterns, pointing out that this quite generally leads towards hierarchical neutrino mass patterns especially disfavoring the vacuum solution.Comment: final version to be published in PRD, 5 pages, 2 figures, RevTe

    From Double Chooz to Triple Chooz - Neutrino Physics at the Chooz Reactor Complex

    Full text link
    We discuss the potential of the proposed Double Chooz reactor experiment to measure the neutrino mixing angle sin⁥22Ξ13\sin^2 2\theta_{13}. We especially consider systematical uncertainties and their partial cancellation in a near and far detector operation, and we discuss implications of a delayed near detector startup. Furthermore, we introduce Triple Chooz, which is a possible upgrade scenario assuming a second, larger far detector, which could start data taking in an existing cavern five years after the first far detector. We review the role of the Chooz reactor experiments in the global context of future neutrino beam experiments. We find that both Double Chooz and Triple Chooz can play a leading role in the search for a finite value of sin⁥22Ξ13\sin^2 2\theta_{13}. Double Chooz could achieve a sensitivity limit of ∌2⋅10−2\sim 2 \cdot 10^{-2} at the 90%~confidence level after 5~years while the Triple Chooz setup could give a sensitivity below 10−210^{-2}.Comment: 18 pages, 6 figure

    Damping signatures in future neutrino oscillation experiments

    Full text link
    We discuss the phenomenology of damping signatures in the neutrino oscillation probabilities, where either the oscillating terms or the probabilities can be damped. This approach is a possibility for tests of non-oscillation effects in future neutrino oscillation experiments, where we mainly focus on reactor and long-baseline experiments. We extensively motivate different damping signatures due to small corrections by neutrino decoherence, neutrino decay, oscillations into sterile neutrinos, or other mechanisms, and classify these signatures according to their energy (spectral) dependencies. We demonstrate, at the example of short baseline reactor experiments, that damping can severely alter the interpretation of results, e.g., it could fake a value of sin⁥(2Ξ13)\sin(2\theta_{13}) smaller than the one provided by Nature. In addition, we demonstrate how a neutrino factory could constrain different damping models with emphasis on how these different models could be distinguished, i.e., how easily the actual non-oscillation effects could be identified. We find that the damping models cluster in different categories, which can be much better distinguished from each other than models within the same cluster.Comment: 33 pages, 5 figures, LaTeX. Final version published in JHE

    From parameter space constraints to the precision determination of the leptonic Dirac CP phase

    Full text link
    We discuss the precision determination of the leptonic Dirac CP phase ÎŽCP\delta_{CP} in neutrino oscillation experiments, where we apply the concept of ``CP coverage''. We demonstrate that this approach carries more information than a conventional CP violation measurement, since it also describes the exclusion of parameter regions. This will be very useful for next-generation long baseline experiments where for sizable sin⁥22Ξ13\sin^2 2 \theta_{13} first constraints on ÎŽCP\delta_{CP} can be obtained. As the most sophisticated experimental setup, we analyze neutrino factories, where we illustrate the major difficulties in their analysis. In addition, we compare their potential to the one of superbeam upgrades and next-generation experiments, which also includes a discussion of synergy effects. We find a strong dependence on the yet unknown true values of sin⁥22Ξ13\sin^2 2 \theta_{13} and ÎŽCP\delta_{CP}, as well as a strong, non-Gaussian dependence on the confidence level. A systematic understanding of the complicated parameter dependence will be given. In addition, it is shown that comparisons of experiments and synergy discussions do in general not allow for an unbiased judgment if they are only performed at selected points in parameter space. Therefore, we present our results in dependence of the yet unknown true values of sin⁥22Ξ13\sin^2 2 \theta_{13} and ÎŽCP\delta_{CP}. Finally we show that for ÎŽCP\delta_{CP} precision measurements there exist simple strategies including superbeams, reactor experiments, superbeam upgrades, and neutrino factories, where the crucial discriminator is sin⁥22Ξ13∌10−2\sin^2 2 \theta_{13} \sim 10^{-2}.Comment: 32 pages, 9 figure

    Tests of CPT Invariance at Neutrino Factories

    Full text link
    We investigate possible tests of CPT invariance on the level of event rates at neutrino factories. We do not assume any specific model but phenomenological differences in the neutrino-antineutrino masses and mixing angles in a Lorentz invariance preserving context, such as it could be induced by physics beyond the Standard Model. We especially focus on the muon neutrino and antineutrino disappearance channels in order to obtain constraints on the neutrino-antineutrino mass and mixing angle differences; we found, for example, that the sensitivity ∣m3−mˉ3∣â‰Č1.9⋅10−4eV|m_3 - \bar{m}_3| \lesssim 1.9 \cdot 10^{-4} \mathrm{eV} could be achieved.Comment: 6 pages, 1 figure, RevTeX4. Final version to be published in Phys. Rev.

    Coordinated changes in the expression of Wnt pathway genes following human and rat peripheral nerve injury

    Get PDF
    A human neuroma-in continuity (NIC), formed following a peripheral nerve lesion, impedes functional recovery. The molecular mechanisms that underlie the formation of a NIC are poorly understood. Here we show that the expression of multiple genes of the Wnt family, including Wnt5a, is changed in NIC tissue from patients that underwent reconstructive surgery. The role of Wnt ligands in NIC pathology and nerve regeneration is of interest because Wnt ligands are implicated in tissue regeneration, fibrosis, axon repulsion and guidance. The observations in NIC prompted us to investigate the expression of Wnt ligands in the injured rat sciatic nerve and in the dorsal root ganglia (DRG). In the injured nerve, four gene clusters were identified with temporal expression profiles corresponding to particular phases of the regeneration process. In the DRG up- and down regulation of certain Wnt receptors suggests that nerve injury has an impact on the responsiveness of injured sensory neurons to Wnt ligands in the nerve. Immunohistochemistry showed that Schwann cells in the NIC and in the injured nerve are the source of Wnt5a, whereas the Wnt5a receptor Ryk is expressed by axons traversing the NIC. Taken together, these observations suggest a central role for Wnt signalling in peripheral nerve regeneration.Neurological Motor Disorder

    Non-standard Hamiltonian effects on neutrino oscillations

    Full text link
    We investigate non-standard Hamiltonian effects on neutrino oscillations, which are effective additional contributions to the vacuum or matter Hamiltonian. Since these effects can enter in either flavor or mass basis, we develop an understanding of the difference between these bases representing the underlying theoretical model. In particular, the simplest of these effects are classified as ``pure'' flavor or mass effects, where the appearance of such a ``pure'' effect can be quite plausible as a leading non-standard contribution from theoretical models. Compared to earlier studies investigating particular effects, we aim for a top-down classification of a possible ``new physics'' signature at future long-baseline neutrino oscillation precision experiments. We develop a general framework for such effects with two neutrino flavors and discuss the extension to three neutrino flavors, as well as we demonstrate the challenges for a neutrino factory to distinguish the theoretical origin of these effects with a numerical example. We find how the precision measurement of neutrino oscillation parameters can be altered by non-standard effects alone (not including non-standard interactions in the creation and detection processes) and that the non-standard effects on Hamiltonian level can be distinguished from other non-standard effects (such as neutrino decoherence and decay) if we consider specific imprint of the effects on the energy spectra of several different oscillation channels at a neutrino factory.Comment: 30 pages, 6 figures, LaTeX, final version, published in Eur.Phys.J.

    Monte Carlo Methods for Estimating Interfacial Free Energies and Line Tensions

    Full text link
    Excess contributions to the free energy due to interfaces occur for many problems encountered in the statistical physics of condensed matter when coexistence between different phases is possible (e.g. wetting phenomena, nucleation, crystal growth, etc.). This article reviews two methods to estimate both interfacial free energies and line tensions by Monte Carlo simulations of simple models, (e.g. the Ising model, a symmetrical binary Lennard-Jones fluid exhibiting a miscibility gap, and a simple Lennard-Jones fluid). One method is based on thermodynamic integration. This method is useful to study flat and inclined interfaces for Ising lattices, allowing also the estimation of line tensions of three-phase contact lines, when the interfaces meet walls (where "surface fields" may act). A generalization to off-lattice systems is described as well. The second method is based on the sampling of the order parameter distribution of the system throughout the two-phase coexistence region of the model. Both the interface free energies of flat interfaces and of (spherical or cylindrical) droplets (or bubbles) can be estimated, including also systems with walls, where sphere-cap shaped wall-attached droplets occur. The curvature-dependence of the interfacial free energy is discussed, and estimates for the line tensions are compared to results from the thermodynamic integration method. Basic limitations of all these methods are critically discussed, and an outlook on other approaches is given

    Origin and Evolution of Saturn's Ring System

    Full text link
    The origin and long-term evolution of Saturn's rings is still an unsolved problem in modern planetary science. In this chapter we review the current state of our knowledge on this long-standing question for the main rings (A, Cassini Division, B, C), the F Ring, and the diffuse rings (E and G). During the Voyager era, models of evolutionary processes affecting the rings on long time scales (erosion, viscous spreading, accretion, ballistic transport, etc.) had suggested that Saturn's rings are not older than 100 My. In addition, Saturn's large system of diffuse rings has been thought to be the result of material loss from one or more of Saturn's satellites. In the Cassini era, high spatial and spectral resolution data have allowed progress to be made on some of these questions. Discoveries such as the ''propellers'' in the A ring, the shape of ring-embedded moonlets, the clumps in the F Ring, and Enceladus' plume provide new constraints on evolutionary processes in Saturn's rings. At the same time, advances in numerical simulations over the last 20 years have opened the way to realistic models of the rings's fine scale structure, and progress in our understanding of the formation of the Solar System provides a better-defined historical context in which to understand ring formation. All these elements have important implications for the origin and long-term evolution of Saturn's rings. They strengthen the idea that Saturn's rings are very dynamical and rapidly evolving, while new arguments suggest that the rings could be older than previously believed, provided that they are regularly renewed. Key evolutionary processes, timescales and possible scenarios for the rings's origin are reviewed in the light of tComment: Chapter 17 of the book ''Saturn After Cassini-Huygens'' Saturn from Cassini-Huygens, Dougherty, M.K.; Esposito, L.W.; Krimigis, S.M. (Ed.) (2009) 537-57

    Massive stars as thermonuclear reactors and their explosions following core collapse

    Full text link
    Nuclear reactions transform atomic nuclei inside stars. This is the process of stellar nucleosynthesis. The basic concepts of determining nuclear reaction rates inside stars are reviewed. How stars manage to burn their fuel so slowly most of the time are also considered. Stellar thermonuclear reactions involving protons in hydrostatic burning are discussed first. Then I discuss triple alpha reactions in the helium burning stage. Carbon and oxygen survive in red giant stars because of the nuclear structure of oxygen and neon. Further nuclear burning of carbon, neon, oxygen and silicon in quiescent conditions are discussed next. In the subsequent core-collapse phase, neutronization due to electron capture from the top of the Fermi sea in a degenerate core takes place. The expected signal of neutrinos from a nearby supernova is calculated. The supernova often explodes inside a dense circumstellar medium, which is established due to the progenitor star losing its outermost envelope in a stellar wind or mass transfer in a binary system. The nature of the circumstellar medium and the ejecta of the supernova and their dynamics are revealed by observations in the optical, IR, radio, and X-ray bands, and I discuss some of these observations and their interpretations.Comment: To be published in " Principles and Perspectives in Cosmochemistry" Lecture Notes on Kodai School on Synthesis of Elements in Stars; ed. by Aruna Goswami & Eswar Reddy, Springer Verlag, 2009. Contains 21 figure
    • 

    corecore