7,480 research outputs found

    Spontaneous magnetization of the XXZ Heisenberg spin-1/2 chain

    Full text link
    Determinant representations of form factors are used to represent the spontaneous magnetization of the Heisenberg XXZ chain (Delta >1) on the finite lattice as the ratio of two determinants. In the thermodynamic limit (the lattice of infinite length), the Baxter formula is reproduced in the framework of Algebraic Bethe Ansatz. It is shown that the finite size corrections to the Baxter formula are exponentially small.Comment: 18 pages, Latex2

    Quantum escape of the phase in a strongly driven Josephson junction

    Full text link
    A quantum mechanical analysis of the Josephson phase escape in the presence of both dc and ac bias currents is presented. We find that the potential barrier for the escape of the phase is effectively suppressed as the resonant condition occurs, i.e. when the frequency ω\omega of the ac bias matches the Josephson junction energy level separation. This effect manifests itself by a pronounced drop in the dependence of the switching current IsI_s on the power WW of the applied microwave radiation and by a peculiar double-peak structure in the switching current distribution P(Is)P(I_s). The developed theory is in a good accord with an experiment which we also report in this paper. The obtained features can be used to characterize certain aspects of the quantum-mechanical behavior of the Josephson phase, such as the energy level quantization, the Rabi frequency of coherent oscillations and the effect of damping.Comment: 4 pages, 3 figures, to be published in Physical Review B (Rapid Communication

    Anomalous Roughening in Experiments of Interfaces in Hele-Shaw Flows with Strong Quenched Disorder

    Get PDF
    We report experimental evidences of anomalous kinetic roughening in the stable displacement of an oil-air interface in a Hele-Shaw cell with strong quenched disorder. The disorder consists on a random modulation of the gap spacing transverse to the growth direction (tracks). We have performed experiments varying average interface velocity and gap spacing, and measured the scaling exponents. We have obtained beta=0.50, beta*=0.25, alpha=1.0, alpha_l=0.5, and z=2. When there is no fluid injection, the interface is driven solely by capillary forces, and a higher value of beta around beta=0.65 is measured. The presence of multiscaling and the particular morphology of the interfaces, characterized by high slopes that follow a L\'evy distribution, confirms the existence of anomalous scaling. From a detailed study of the motion of the oil--air interface we show that the anomaly is a consequence of different local velocities over tracks plus the coupling in the motion between neighboring tracks. The anomaly disappears at high interface velocities, weak capillary forces, or when the disorder is not sufficiently persistent in the growth direction. We have also observed the absence of scaling when the disorder is very strong or when a regular modulation of the gap spacing is introduced.Comment: 14 pages, 17 figure

    Dark Matter Constraints on Gaugino/Higgsino Masses in Split Supersymmetry and Their Implications at Colliders

    Full text link
    In split supersymmetry, gauginos and Higgsinos are the only supersymmetric particles which are possibly accessible at foreseeable colliders. While the direct experimental searches, such as LEP and Tevatron experiments, gave robust lower bounds on the masses of these particles, the cosmic dark matter can give some upper bounds and thus have important implications for the searches at future colliders. In this work we scrutinize such dark matter constraints and show the allowed mass range for charginos and neutralinos (the mass eigenstates of gauginos and Higgsinos). We find that the lightest chargino must be lighter than about 1 TeV under the popular assumption M_1=M_2/2 and about 2 or 3 TeV in other cases. The corresponding production rates of the lightest chargino at the CERN Large Hadron Collider (LHC) and the International Linear Colldier (ILC) are also shown. While in some parts of the allowed region the chargino pair production rate can be larger than 1 pb at LHC and 100 fb at the ILC, other parts of the region correspond to very small production rates and thus there is no guarantee to find the charginos of split supersymmetry at future colliders.Comment: version in EPJC (refs added

    Comments on Baryon Melting in Quark Gluon Plasma with Gluon Condensation

    Full text link
    We consider a black hole solution with a non-trivial dilaton from IIB super gravity which is expected to describe a strongly coupled hot gauge plasma with non-vanishing gluon condensation present. We construct a rotating and moving baryon to probe the screening and phases of the plasma. Melting of the baryons in hot plasma in this background had been studied previously, however, we show that baryons melt much lower temperature than has been suggested previously.Comment: 3 figures, 12 page

    Submergence of the Sidebands in the Photon-assisted Tunneling through a Quantum Dot Weakly Coupled to Luttinger Liquid Leads

    Full text link
    We study theoretically the photon-assisted tunneling through a quantum dot weakly coupled to Luttinger liquids (LL) leads, and find that the zero bias dc conductance is strongly affected by the interactions in the LL leads. In comparison with the system with Fermi liquid (FL) leads, the sideband peaks of the dc conductance become blurring for 1/2<g<1, and finally merge into the central peak for g<1/2, (g is the interaction parameter in the LL leads). The sidebands are suppressed for LL leads with Coulomb interactions strong enough, and the conductance always appears as a single peak for any strength and frequency of the external time-dependent field. Furthermore, the quenching effect of the central peak for the FL case does not exist for g<1/2.Comment: 9 pages, 4 figure

    A modified ant colony optimization algorithm modeled on tabu-search methods

    Full text link
    • 

    corecore