1,705 research outputs found

    Comparison of MEMS switches and PIN diodes for switched dual tuned RF coils

    Get PDF
    PURPOSE: To evaluate the performance of micro-electromechanical systems (MEMS) switches against PIN diodes for switching a dual-tuned RF coil between19F and1H resonant frequencies for multi-nuclear lung imaging. METHODS: A four-element fixed-phase and amplitude transmit-receive RF coil was constructed to provide homogeneous excitation across the lungs, and to serve as a test system for various switching methods. The MR imaging and RF performance of the coil when switched between the19F and1H frequencies using MEMS switches, PIN diodes and hardwired configurations were compared. RESULTS: The performance of the coil with MEMS or PIN diode switching was comparable in terms of RF measurements, transmit efficiency and image SNR on both19F and1H nuclei. When the coil was not switched to the resonance frequency of the respective nucleus being imaged, reductions in the transmit efficiency were observed of 32% at the19F frequency and 12% at the1H frequency. The coil provides transmit field homogeneity of ±12.9% at the1H frequency and ±14.4% at the19F frequency in phantoms representing the thorax with the air space of the lungs filled with perfluoropropane gas. CONCLUSION: MEMS and PIN diodes were found to provide comparable performance in on-state configuration, while MEMS were more robust in off-state high-powered operation (>1 kW), providing higher isolation and requiring a lower DC switching voltage than is needed for reverse biasing of PIN diodes. In addition, clear benefits of switching between the19F and1H resonances were demonstrated, despite the proximity of their Larmor frequencies

    Climate change impact on crop productivity in the semi-arid tropics of Zimbabwe in the 21st century

    Get PDF

    Nitrate pollution in groundwater: its causes and effects in central part of Suvarnamukhi River Basin, Karnataka

    Get PDF
    Groundwater is the major source of drinking water in the sub-​basins of the central part of Suvarnamukhi River Basin. Chem. anal. is carried out for 55 groundwater samples collected during pre-​monsoon and post-​monsoon seasons from five sub-​basins. The av. nitrate concn. is 65.96 and 97.17 ppm in pre-​monsoon and post-​monsoon seasons resp. According to Bureau of Indian Stds. (BIS)​, the max. desirable and permissible limit of nitrate is 45 ppm. In the study area, 25 samples (45​%) and 32 samples (58​%) in pre-​monsoon and post-​monsoon seasons are not suitable for drinking purpose with a seasonal variation of 43​%. Seven samples of post monsoon have increased NO3-​ concn. compared to pre-​monsoon season. The interrelationship of nitrate with other cations and anions suggest the most possible sources of nitrate as non-​point sources (leaching mechanism of nitrate due to extensive use of fertilizers) and to some extent point sources (cattle sheds and poultry farms, leakages from septic tanks, sewerage effluents)​. The nitrate distribution map shows anomalous zones in the central and south eastern part of the study area in both pre and post-​monsoon seasons suggesting that groundwater here is completely polluted and is unfit for drinking. The north western portion of the study area has high NO3-​ concn. during post monsoon season suggesting that the water is polluted due to application of nitrate rich fertilizers

    High resolution spectroscopy and chemical shift imaging of hyperpolarized 129 Xe dissolved in the human brain in vivo at 1.5 tesla

    Get PDF
    Purpose Upon inhalation, xenon diffuses into the bloodstream and is transported to the brain, where it dissolves in various compartments of the brain. Although up to five chemically distinct peaks have been previously observed in 129Xe rat head spectra, to date only three peaks have been reported in the human head. This study demonstrates high resolution spectroscopy and chemical shift imaging (CSI) of 129Xe dissolved in the human head at 1.5 Tesla. Methods A 129Xe radiofrequency coil was built in-house and 129Xe gas was polarized using spin-exchange optical pumping. Following the inhalation of 129Xe gas, NMR spectroscopy was performed with spectral resolution of 0.033 ppm. Two-dimensional CSI in all three anatomical planes was performed with spectral resolution of 2.1 ppm and voxel size 20 mm × 20 mm. Results Spectra of hyperpolarized 129Xe dissolved in the human head showed five distinct peaks at 188 ppm, 192 ppm, 196 ppm, 200 ppm, and 217 ppm. Assignment of these peaks was consistent with earlier studies. Conclusion High resolution spectroscopy and CSI of hyperpolarized 129Xe dissolved in the human head has been demonstrated. For the first time, five distinct NMR peaks have been observed in 129Xe spectra from the human head in vivo

    Lithosphere Structure and upper mantle characteristics below the Bay of Bengal

    No full text
    The oceanic lithosphere in the Bay of Bengal (BOB) formed 80–120 Ma following the breakup of eastern Gondwanaland. Since its formation, it has been affected by the emplacement of two long N-S trending linear aseismic ridges (85oE and Ninetyeast) and by the loading of ca. 20-km of sediments of the Bengal Fan. Here, we present the results of a combined spatial and spectral domain analysis of residual geoid, bathymetry and gravity data constrained by seismic reflection and refraction data. Self-consistent geoid and gravity modeling defined by temperature-dependent mantle densities along a N-S transect in the BOB region revealed that the depth to the Lithosphere-Asthenosphere boundary (LAB) deepens steeply from 77 km in the south to 127 km in north, with the greater thickness being anomalously thick compared to the lithosphere of similar-age beneath the Pacific Ocean. The Geoid-Topography Ratio (GTR) analysis of the 85°E and Ninetyeast ridges indicate that they are compensated at shallow depths. Effective elastic thickness (Te) estimates obtained through admittance/ coherence analysis as well as the flexural modeling along these ridges led to the conclusions: i) 85°E Ridge was emplaced in off-ridge environment (Te = 10–15 km); ii) the higher Te values of ?25 km over the Afanasy Nikitin Seamount (ANS) reflect the secondary emplacement of the seamount peaks in off-ridge environment, iii) that the emplacement of the Ninetyeast Ridge north of 2°N occurred in an off-ridge environment as indicated by higher Te values (25-30 km). Furthermore, the admittance analysis of geoid and bathymetry revealed that the admittance signatures at wavelengths >800 km are compensated by processes related to upper mantle convection

    Effective action and interaction energy of coupled quantum dots

    Full text link
    We obtain the effective action of tunnel-coupled quantum dots, by modeling the system as a Luttinger liquid with multiple barriers. For a double dot system, we find that the resonance conditions for perfect conductance form a hexagon in the plane of the two gate voltages controlling the density of electrons in each dot. We also explicitly obtain the functional dependence of the interaction energy and peak-splitting on the gate voltage controlling tunneling between the dots and their charging energies. Our results are in good agreement with recent experimental results, from which we obtain the Luttinger interaction parameter K=0.74K=0.74.Comment: 5 pgs,latex,3 figs,revised version to be publshed in Phys.Rev.

    Modified fracture properties of cement composites with nano/micro carbonized bagasse fibers

    Get PDF
    A novel cost-effective alternative in the form of nano/micro carbonized particles produced from waste bagasse fibers has been explored to modify the mechanical properties and fracture pattern of the resulting cementitious composites. Carbonized bagasse particles were produced at Politecnico di Torino and characterized by Raman spectroscopy and scanning electron microscopy. When added with cement paste up to 1 wt% in six different proportions, the carbonized bagasse particles were found effective in significant enhancement of mechanical strength as well as fracture toughness. From micro-graphical observations it is evident that these heterogenic inclusions either block the propagation of micro cracks which has to deviate from its straight trajectory and has to follow the carbon nano/micro particles contour or distribute it into multiple finer cracks. Crack contouring along the carbonized particle, crack pinning, crack diversions and crack branching are the mechanisms which can explain the increase of toughness in the composite samples

    A thermodynamic framework to develop rate-type models for fluids without instantaneous elasticity

    Full text link
    In this paper, we apply the thermodynamic framework recently put into place by Rajagopal and co-workers, to develop rate-type models for viscoelastic fluids which do not possess instantaneous elasticity. To illustrate the capabilities of such models we make a specific choice for the specific Helmholtz potential and the rate of dissipation and consider the creep and stress relaxation response associated with the model. Given specific forms for the Helmholtz potential and the rate of dissipation, the rate of dissipation is maximized with the constraint that the difference between the stress power and the rate of change of Helmholtz potential is equal to the rate of dissipation and any other constraint that may be applicable such as incompressibility. We show that the model that is developed exhibits fluid-like characteristics and is incapable of instantaneous elastic response. It also includes Maxwell-like and Kelvin-Voigt-like viscoelastic materials (when certain material moduli take special values).Comment: 18 pages, 5 figure

    Amplification of evanescent waves in a lossy left-handed material slab

    Full text link
    We carry out finite-difference time-domain (FDTD) simulations, with a specially-designed boundary condition, on pure evanescent waves interacting with a lossy left-handed material (LHM) slab. Our results provide the first full-wave numerical evidence for the amplification of evanescent waves inside a LHM slab of finite absorption. The amplification is due to the interactions between the evanescent waves and the coupled surface polaritons at the two surfaces of the LHM slab and the physical process can be described by a simple model.Comment: 4 pages, 2 figure
    corecore