118 research outputs found
Harrison transformation of hyperelliptic solutions and charged dust disks
We use a Harrison transformation on solutions to the stationary axisymmetric
Einstein equations to generate solutions of the Einstein-Maxwell equations. The
case of hyperelliptic solutions to the Ernst equation is studied in detail.
Analytic expressions for the metric and the multipole moments are obtained. As
an example we consider the transformation of a family of counter-rotating dust
disks. The resulting solutions can be interpreted as disks with currents and
matter with a purely azimuthal pressure or as two streams of freely moving
charged particles. We discuss interesting limiting cases as the extreme limit
where the charge becomes identical to the mass, and the ultrarelativistic limit
where the central redshift diverges.Comment: 20 pages, 9 figure
All Vacuum Near-Horizon Geometries in -dimensions with Commuting Rotational Symmetries
We explicitly construct all stationary, non-static, extremal near horizon
geometries in dimensions that satisfy the vacuum Einstein equations, and
that have commuting rotational symmetries. Our work generalizes
[arXiv:0806.2051] by Kunduri and Lucietti, where such a classification had been
given in . But our method is different from theirs and relies on a
matrix formulation of the Einstein equations. Unlike their method, this matrix
formulation works for any dimension. The metrics that we find come in three
families, with horizon topology , or ,
or quotients thereof. Our metrics depend on two discrete parameters specifying
the topology type, as well as continuous parameters. Not all of
our metrics in seem to arise as the near horizon limits of known
black hole solutions.Comment: 22 pages, Latex, no figures, title changed, references added,
discussion of the parameters specifying solutions corrected, amended to match
published versio
STATIC FOUR-DIMENSIONAL ABELIAN BLACK HOLES IN KALUZA-KLEIN THEORY
Static, four-dimensional (4-d) black holes (BH's) in ()-d Kaluza-Klein
(KK) theory with Abelian isometry and diagonal internal metric have at most one
electric () and one magnetic () charges, which can either come from the
same -gauge field (corresponding to BH's in effective 5-d KK theory) or
from different ones (corresponding to BH's with isometry
of an effective 6-d KK theory). In the latter case, explicit non-extreme
solutions have the global space-time of Schwarzschild BH's, finite temperature,
and non-zero entropy. In the extreme (supersymmetric) limit the singularity
becomes null, the temperature saturates the upper bound
, and entropy is zero. A class of KK BH's with
constrained charge configurations, exhibiting a continuous electric-magnetic
duality, are generated by global transformations on the above classes
of the solutions.Comment: 11 pages, 2 Postscript figures. uses RevTeX and psfig.sty (for figs)
paper and figs also at ftp://dept.physics.upenn.edu/pub/Cvetic/UPR-645-
Single-neutron transfer from 11Be gs via the (p,d) reaction with a radioactive beam
The 11Be(p,d)10Be reaction has been performed in inverse kinematics with a
radioactive 11Be beam of E/A = 35.3 MeV. Angular distributions for the 0+
ground state, the 2+, 3.37 MeV state and the multiplet of states around 6 MeV
in 10Be were measured at angles up to 16 deg CM by detecting the 10Be in a
dispersion-matched spectrometer and the coincident deuterons in a silicon
array. Distorted wave and coupled-channels calculations have been performed to
investigate the amount of 2+ core excitation in 11Be gs. The use of "realistic"
11Be wave functions is emphasised and bound state form factors have been
obtained by solving the particle-vibration coupling equations. This calculation
gives a dominant 2s component in the 11Be gs wave function with a 16% [2+ x 1d]
core excitation admixture. Cross sections calculated with these form factors
are in good agreement with the present data. The Separation Energy prescription
for the bound state wave function also gives satisfactory fits to the data, but
leads to a significantly larger [2 x 1d] component in 11Be gs.Comment: 39 pages, 12 figures. Accepted for publication in Nuclear Physics A.
Added minor corrections made in proof to pages 26 and 3
Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma
SummaryWe report a comprehensive molecular characterization of pheochromocytomas and paragangliomas (PCCs/PGLs), a rare tumor type. Multi-platform integration revealed that PCCs/PGLs are driven by diverse alterations affecting multiple genes and pathways. Pathogenic germline mutations occurred in eight PCC/PGL susceptibility genes. We identified CSDE1 as a somatically mutated driver gene, complementing four known drivers (HRAS, RET, EPAS1, and NF1). We also discovered fusion genes in PCCs/PGLs, involving MAML3, BRAF, NGFR, and NF1. Integrated analysis classified PCCs/PGLs into four molecularly defined groups: a kinase signaling subtype, a pseudohypoxia subtype, a Wnt-altered subtype, driven by MAML3 and CSDE1, and a cortical admixture subtype. Correlates of metastatic PCCs/PGLs included the MAML3 fusion gene. This integrated molecular characterization provides a comprehensive foundation for developing PCC/PGL precision medicine
- …