15 research outputs found

    Magnetized Electron Source for JLEIC Cooler

    Get PDF
    Magnetized bunched-beam electron cooling is a critical part of the Jefferson Lab Electron Ion Collider (JLEIC). Strong cooling of ion beams will be accomplished inside a cooling solenoid where the ions co-propagate with an electron beam generated from a source immersed in magnetic field. This contribution describes the production and characterization of magnetized electron beam using a compact 300 kV DC high voltage photogun and bialkali-antimonide photocathodes. Beam magnetization was studied using a diagnostic beamline that includes viewer screens for measuring the shearing angle of the electron beamlet passing through a narrow upstream slit. Correlated beam emittance with magnetic field at the photocathode was measured for various laser spot sizes. Measurements of photocathode lifetime were carried out at different magnetized electron beam currents up to 28 mA and high bunch charge up to 0.7 nano-Coulomb was demonstrated

    300 kV DC High Voltage Photogun With Inverted Insulator Geometry and CsKâ‚‚sb Photocathode

    Get PDF
    A compact DC high voltage photogun with inverted-insulator geometry was designed, built and operated reliably at 300 kV bias voltage using alkali-antimonide photocathodes. This presentation describes key electrostatic design features of the photogun with accompanying emittance measurements obtained across the entire photocathode surface that speak to field non-uniformity within the cathode/anode gap. A summary of initial photocathode lifetime measurements at beam currents up to 4.5 mA is also presented

    Constraints on the Nucleon Strange Form Factors at Q^2 ~ 0.1 GeV^2

    Get PDF
    We report the most precise measurement to date of a parity-violating asymmetry in elastic electron-proton scattering. The measurement was carried out with a beam energy of 3.03 GeV and a scattering angle =6 degrees, with the result A_PV = -1.14 +/- 0.24 (stat) +/- 0.06 (syst) parts per million. From this we extract, at Q^2 = 0.099 GeV^2, the strange form factor combination G_E^s + 0.080 G_M^s = 0.030 +/- 0.025 (stat) +/- 0.006 (syst) +/- 0.012 (FF) where the first two errors are experimental and the last error is due to the uncertainty in the neutron electromagnetic form factor. This result significantly improves current knowledge of G_E^s and G_M^s at Q^2 ~0.1 GeV^2. A consistent picture emerges when several measurements at about the same Q^2 value are combined: G_E^s is consistent with zero while G_M^s prefers positive values though G_E^s=G_M^s=0 is compatible with the data at 95% C.L.Comment: minor wording changes for clarity, updated references, dropped one figure to improve focu

    The G0 Experiment: Apparatus for Parity-Violating Electron Scattering Measurements at Forward and Backward Angles

    Full text link
    In the G0 experiment, performed at Jefferson Lab, the parity-violating elastic scattering of electrons from protons and quasi-elastic scattering from deuterons is measured in order to determine the neutral weak currents of the nucleon. Asymmetries as small as 1 part per million in the scattering of a polarized electron beam are determined using a dedicated apparatus. It consists of specialized beam-monitoring and control systems, a cryogenic hydrogen (or deuterium) target, and a superconducting, toroidal magnetic spectrometer equipped with plastic scintillation and aerogel Cerenkov detectors, as well as fast readout electronics for the measurement of individual events. The overall design and performance of this experimental system is discussed.Comment: Submitted to Nuclear Instruments and Method

    Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering

    Get PDF
    We have measured the beam-normal single-spin asymmetry in elastic scattering of transversely-polarized 3 GeV electrons from unpolarized protons at Q^2 = 0.15, 0.25 (GeV/c)^2. The results are inconsistent with calculations solely using the elastic nucleon intermediate state, and generally agree with calculations with significant inelastic hadronic intermediate state contributions. A_n provides a direct probe of the imaginary component of the 2-gamma exchange amplitude, the complete description of which is important in the interpretation of data from precision electron-scattering experiments.Comment: 5 pages, 3 figures, submitted to Physical Review Letters; shortened to meet PRL length limit, clarified some text after referee's comment

    Strange Quark Contributions to Parity-Violating Asymmetries in the Forward G0 Electron-Proton Scattering Experiment

    Get PDF
    We have measured parity-violating asymmetries in elastic electron-proton scattering over the range of momentum transfers 0.12 < Q^2 < 1.0 GeV^2. These asymmetries, arising from interference of the electromagnetic and neutral weak interactions, are sensitive to strange quark contributions to the currents of the proton. The measurements were made at JLab using a toroidal spectrometer to detect the recoiling protons from a liquid hydrogen target. The results indicate non-zero, Q^2 dependent, strange quark contributions and provide new information beyond that obtained in previous experiments.Comment: 5 pages, 2 figure

    Strange Quark Contributions to Parity-Violating Asymmetries in the Forward G0 Electron-Proton Scattering Experiment

    Get PDF
    We have measured parity-violating asymmetries in elastic electron-proton scattering over the range of momentum transfers 0.12 ≤ Q2 ≤ 1.0 GeV2. These asymmetries, arising from interference of the electromagnetic and neutral weak interactions, are sensitive to strange quark contributions to the currents of the proton. The measurements were made at JLab using a toroidal spectrom- eter to detect the recoiling protons from a liquid hydrogen target. The results indicate non-zero, Q2 dependent, strange quark contributions and provide new information beyond that obtained in previous experiments

    Q

    Full text link
    The Qweak experiment, which took data at Jefferson Lab in the period 2010 - 2012, will precisely determine the weak charge of the proton by measuring the parity-violating asymmetry in elastic e-p scattering at 1.1 GeV using a longitudinally polarized electron beam and a liquid hydrogen target at a low momentum transfer of Q2 = 0.025 (GeV/c)2. The weak charge of the proton is predicted by the Standard Model and any significant deviation would indicate physics beyond the Standard Model. The technical challenges and experimental apparatus for measuring the weak charge of the proton will be discussed, as well as the method of extracting the weak charge of the proton. The results from a small subset of the data, that has been published, will also be presented. Furthermore an update will be given of the current status of the data analysis

    Jefferson Lab Hall C: Precision Physics at the Luminosity Frontier

    No full text
    Over the last three decades, Hall C has been a key contributor to progress in the understanding of hadron structure and interactions. An outline of a potential future Hall C physics program focused on precision measurements of small cross sections is presented. A detailed overview of this unique facility, whose flexible configuration allows many opportunities for new experimental equipment that help address a wide range of questions in hadronic physics, is included as well
    corecore