84 research outputs found

    Coexistence of Single and Double-Quantum Vortex Lines

    Full text link
    We discuss the configurations in which singly and doubly quantized vortex lines may coexist in a rotating superfluid. General principles of energy minimization lead to the conclusion that in equilibrium the two vortex species segregate within a cylindrical vortex cluster in two coaxial domains where the singly quantized lines are in the outer annular region. This is confirmed with simulation calculations on discrete vortex lines. Experimentally the coexistence can be studied in rotating superfluid 3^3He-A. With cw NMR techniques we find the radial distribution of the two vortex species to depend on how the cluster is prepared: (i) By cooling through TcT_c in rotation, coexistence in the minimum energy configuration is confirmed. (ii) A glassy agglomerate is formed if one starts with an equilibrium cluster of single-quantum vortex lines and adds to it sequentially double-quantum lines, by increasing the rotation velocity in the superfluid state. This proves that the energy barriers, which separate different cluster configurations, are too high for metastabilities to anneal.Comment: 12 pages, 11 figures; Changed content, 15 pages, 14 figure

    Low-temperature nonequilibrium transport in a Luttinger liquid

    Full text link
    The temperature-dependent nonlinear conductance for transport of a Luttinger liquid through a barrier is calculated in the nonperturbative regime for g=1/2ϵg=1/2-\epsilon, where gg is the dimensionless interaction constant. To describe the low-energy behavior, we perform a leading-log summation of all diagrams contributing to the conductance which is valid for ϵ<<1|\epsilon| << 1. With increasing external voltage, the asymptotic low-temperature behavior displays a turnover from the T2/g2T^{2/g-2} to a universal T2T^2 law.Comment: 13 pages RevTeX 3.0, accepted by Physical Review

    Diagrammatic self-energy approximations and the total particle number

    Get PDF
    There is increasing interest in many-body perturbation theory as a practical tool for the calculation of ground-state properties. As a consequence, unambiguous sum rules such as the conservation of particle number under the influence of the Coulomb interaction have acquired an importance that did not exist for calculations of excited-state properties. In this paper we obtain a rigorous, simple relation whose fulfilment guarantees particle-number conservation in a given diagrammatic self-energy approximation. Hedin's G(0)W(0) approximation does not satisfy this relation and hence violates the particle-number sum rule. Very precise calculations for the homogeneous electron gas and a model inhomogeneous electron system allow the extent of the nonconservation to be estimated

    Impact of eV-mass sterile neutrinos on neutrino-driven supernova outflows

    Full text link
    Motivated by recent hints for sterile neutrinos from the reactor anomaly, we study active-sterile conversions in a three-flavor scenario (2 active + 1 sterile families) for three different representative times during the neutrino-cooling evolution of the proto-neutron star born in an electron-capture supernova. In our "early model" (0.5 s post bounce), the nu_e-nu_s MSW effect driven by Delta m^2=2.35 eV^2 is dominated by ordinary matter and leads to a complete nu_e-nu_s swap with little or no trace of collective flavor oscillations. In our "intermediate" (2.9 s p.b.) and "late models" (6.5 s p.b.), neutrinos themselves significantly modify the nu_e-nu_s matter effect, and, in particular in the late model, nu-nu refraction strongly reduces the matter effect, largely suppressing the overall nu_e-nu_s MSW conversion. This phenomenon has not been reported in previous studies of active-sterile supernova neutrino oscillations. We always include the feedback effect on the electron fraction Y_e due to neutrino oscillations. In all examples, Y_e is reduced and therefore the presence of sterile neutrinos can affect the conditions for heavy-element formation in the supernova ejecta, even if probably not enabling the r-process in the investigated outflows of an electron-capture supernova. The impact of neutrino-neutrino refraction is strong but complicated, leaving open the possibility that with a more complete treatment, or for other supernova models, active-sterile neutrino oscillations could generate conditions suitable for the r-process.Comment: 23 pages, including 14 figures and 2 tables (minor changes in the text). Matches published version in JCA

    Approach to the semiconductor cavity QED in high-Q regimes with q-deformed boson

    Full text link
    The high density Frenkel exciton which interacts with a single mode microcavity field is dealed with in the framework of the q-deformed boson. It is shown that the q-defomation of bosonic commutation relations is satisfied naturally by the exciton operators when the low density limit is deviated. An analytical expression of the physical spectrum for the exciton is given by using of the dressed states of the cavity field and the exciton. We also give the numerical study and compare the theoretical results with the experimental resultsComment: 6 pages, 2 figure

    Charge self-consistent dynamical mean-field theory based on the full-potential linear muffin-tin orbital method: methodology and applications

    Full text link
    Full charge self-consistence (CSC) over the electron density has been implemented into the local density approximation plus dynamical mean-field theory (LDA+DMFT) scheme based on a full-potential linear muffin-tin orbital method (FP-LMTO). Computational details on the construction of the electron density from the density matrix are provided. The method is tested on the prototypical charge-transfer insulator NiO using a simple static Hartree-Fock approximation as impurity solver. The spectral and ground state properties of bcc Fe are then addressed, by means of the spin-polarized T-matrix fluctuation exchange solver (SPTF). Finally the permanent magnet SmCo5_5 is studied using multiple impurity solvers, SPTF and Hubbard I, as the strength of the local Coulomb interaction on the Sm and Co sites are drastically different. The developed CSC-DMFT method is shown to in general improve on materials properties like magnetic moments, electronic structure and the materials density.Comment: 10 pages, 5 figure

    Quantum Mechanics and Thermodynamics of Particles with Distance Dependent Statistics

    Full text link
    The general notion of distance dependent statistics in anyon-like systems is discussed. The two-body problem for such statistics is considered, the general formula for the second virial coefficient is derived and it is shown that in the limiting cases it reproduces the known results for ideal anyons.Comment: 9 pages, LATEX Kiev Institute for Theoretical Physics preprint ITP-93-5E, January 199

    Summing up the perturbation series in the Schwinger Model

    Get PDF
    Perturbation series for the electron propagator in the Schwinger Model is summed up in a direct way by adding contributions coming from individual Feynman diagrams. The calculation shows the complete agreement between nonperturbative and perturbative approaches.Comment: 10 pages (in REVTEX

    Towards a Nonequilibrium Quantum Field Theory Approach to Electroweak Baryogenesis

    Get PDF
    We propose a general method to compute CPCP-violating observables from extensions of the standard model in the context of electroweak baryogenesis. It is alternative to the one recently developed by Huet and Nelson and relies on a nonequilibrium quantum field theory approach. The method is valid for all shapes and sizes of the bubble wall expanding in the thermal bath during a first-order electroweak phase transition. The quantum physics of CPCP-violation and its suppression coming from the incoherent nature of thermal processes are also made explicit.Comment: 19 pages, 1 figure available upon e-mail reques

    Quasicondensate and superfluid fraction in the 2D charged-boson gas at finite temperature

    Full text link
    The Bogoliubov - de Gennes equations are solved for the Coulomb Bose gas describing a fluid of charged bosons at finite temperature. The approach is applicable in the weak coupling regime and the extent of its quantitative usefulness is tested in the three-dimensional fluid, for which diffusion Monte Carlo data are available on the condensate fraction at zero temperature. The one-body density matrix is then evaluated by the same approach for the two-dimensional fluid with e^2/r interactions, to demonstrate the presence of a quasi-condensate from its power-law decay with increasing distance and to evaluate the superfluid fraction as a function of temperature at weak coupling.Comment: 9 pages, 2 figure
    corecore