38 research outputs found

    Implementation and analysis of list mode algorithm using tubes of response on a dedicated brain and breast PET

    Full text link
    In this work we present an innovative algorithm for the reconstruction of PET images based on the List-Mode (LM) technique which improves their spatial resolution compared to results obtained with current MLEM algorithms. This study appears as a part of a large project with the aim of improving diagnosis in early Alzheimer disease stages by means of a newly developed hybrid PET-MR insert. At the present, Alzheimer is the most relevant neurodegenerative disease and the best way to apply an effective treatment is its early diagnosis. The PET device will consist of several monolithic LYSO crystals coupled to SiPM detectors. Monolithic crystals can reduce scanner costs with the advantage to enable implementation of very small virtual pixels in their geometry. This is especially useful for LM reconstruction algorithms, since they do not need a pre-calculated system matrix. We have developed an LM algorithm which has been initially tested with a large aperture (186 mm) breast PET system. Such an algorithm instead of using the common lines of response, incorporates a novel calculation of tubes of response. The new approach improves the volumetric spatial resolution about a factor 2 at the border of the field of view when compared with traditionally used MLEM algorithm. Moreover, it has also shown to decrease the image noise, thus increasing the image quality. © 2012 Elsevier B.V. All rights reserved.This work was supported by the Centre for Industrial Technological Development co-funded by FEDER through the Technology Fund (DREAM Project, IDI-20110718), by the Spanish Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica (I+D+I) under Grant. No. FIS2010-21216-CO2-01TEO 2008/114.Moliner Martínez, L.; Correcher, C.; González Martínez, AJ.; Conde Castellanos, PE.; Hernández Hernández, L.; Orero Palomares, A.; Rodríguez Álvarez, MJ.... (2013). Implementation and analysis of list mode algorithm using tubes of response on a dedicated brain and breast PET. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 702:129-132. https://doi.org/10.1016/j.nima.2012.08.029S12913270

    Design of the PET–MR system for head imaging of the DREAM Project

    Full text link
    NOTICE: this is the author’s version of a work that was accepted for publication in Nuclear Instruments and Methods in Physics Research Section A. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Nuclear Instruments and Methods in Physics Research Section A, Volume 702, 21 February 2013, Pages 94–97 DOI 10.1016/j.nima.2012.08.028In this paper we describe the overall design of a PET–MR system for head imaging within the framework of the DREAM Project as well as the first detector module tests. The PET system design consists of 4 rings of 16 detector modules each and it is expected to be integrated in a head dedicated radio frequency coil of an MR scanner. The PET modules are based on monolithic LYSO crystals coupled by means of optical devices to an array of 256 Silicon Photomultipliers. These types of crystals allow to preserve the scintillation light distribution and, thus, to recover the exact photon impact position with the proper characterization of such a distribution. Every module contains 4 Application Specific Integrated Circuits (ASICs) which return detailed information of several light statistical momenta. The preliminary tests carried out on this design and controlled by means of ASICs have shown promising results towards the suitability of hybrid PET–MR systems.This work was supported by the Centre for Industrial Technological Development co-funded by FEDER through the Technology Fund (DREAM Project, IDI-20110718), the Spanish Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica (I + D + I) under Grant no. FIS2010-21216-CO2-01 and the Valencian Local Government under Grant PROMETEO 2008/114.González Martínez, AJ.; Conde, P.; Hernández Hernández, L.; Herrero Bosch, V.; Moliner Martínez, L.; Monzó Ferrer, JM.; Orero Palomares, A.... (2013). Design of the PET–MR system for head imaging of the DREAM Project. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 702:94-97. https://doi.org/10.1016/j.nima.2012.08.028S949770

    Monolithic crystals for PET devices: optical coupling optimization

    Full text link
    NOTICE: this is the author’s version of a work that was accepted for publication in Nuclear Instruments and Methods in Physics Research Section A. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Nuclear Instruments and Methods in Physics Research Section A [Volume 731, 11 December 2013, Pages 288–294] DOI 10.1016/j.nima.2013.05.049[EN] In this work we present a method to efficiently collect scintillation light when using monolithic scintillator crystals. The acceptance angle of the scintillation light has been reduced by means of optical devices reducing the border effect which typically affects continuous crystals. We have applied this procedure on gamma detectors for PET systems using both position sensitive PMTs and arrays of SiPMs. In the case of using SiPMs, this approach also helps to reduce the photosensor active area. We evaluated the method using PMTs with a variety of different crystals with thicknesses ranging from 10 to 24 mm. We found that our design allows the use of crystal blocks with a thickness of up to 18 mm without degrading the spatial resolution caused by edge effects and without a significant detriment to the energy resolution. These results were compared with simulated data. The first results of monolithic LYSO crystals coupled to an array of 256 SiPMs by means of individual optical light guides are also presented.This work was supported by the Centre for Industrial Technological Development co-funded by FEDER through the Technology Fund (DREAM Project, IDI-20110718), the Spanish Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica (I+D +I) under Grant no. FIS2010-21216-CO2-01 and the Valencian Local Government under Grant PROMETEO 2008/114.González Martínez, AJ.; Peiró, A.; Conde, P.; Hernández Hernández, L.; Moliner Martínez, L.; Orero Palomares, A.; Rodríguez-Álvarez, M.... (2013). Monolithic crystals for PET devices: optical coupling optimization. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 731:288-294. https://doi.org/10.1016/j.nima.2013.05.049S28829473

    Building blocks of a multi-layer PET with time sequence photon interaction discrimination and double Compton camera

    Full text link
    [EN] Current PET detectors have a very low sensitivity, of the order of a few percent. One of the reasons is the fact that Compton interactions are rejected. If an event involves multiple Compton scattering and the total deposited energy lays within the photoelectric peak, then an energy-weighted centroid is the given output for the coordinates of the reconstructed interaction point. This introduces distortion in the final reconstructed image. The aim of our work is to prove that Compton events are a very rich source of additional information as one can improve the resolution of the detector and implicitly the final reconstructed image. This could be a real breakthrough for PET detector technology as one should be able to obtain better results with less patient radiation. Using a PET as a double Compton camera, by means of Compton cone matching i.e., Compton cones coming from the same event should be compatible, is applied to discard randoms, patient scattered events and also, to perform a correct matching among events with multiple coincidences. In order to fully benefit experimentally from Compton events using monolithic scintillators a multi-layer configuration is needed and a good time-of-flight resolution.This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant Agreement No. 695536). This work was supported in part by the Spanish Government Grants TEC2016-79884-C2 and RTC-2016-5186-1.Ilisie, V.; Giménez-Alventosa, V.; Moliner Martínez, L.; Sánchez, F.; González Martínez, AJ.; Rodríguez-Álvarez, M.; Benlloch Baviera, JM. (2018). Building blocks of a multi-layer PET with time sequence photon interaction discrimination and double Compton camera. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment. 895:74-83. https://doi.org/10.1016/j.nima.2018.03.076S748389

    Monte Carlo characterization of PETALO, a full-body liquid xenon-based PET detector

    Full text link
    [EN] New detector approaches in Positron Emission Tomography imaging will play an important role in reducing costs, lowering administered radiation doses, and improving overall performance. PETALO employs liquid xenon as the active scintillating medium and UV-sensitive silicon photomultipliers for scintillation readout. The scintillation time in liquid xenon is fast enough to register time-of-flight information for each detected coincidence, and sufficient scintillation is produced with low enough fluctuations to obtain good energy resolution. The present simulation study examines a full-body-sized PETALO detector and evaluates its potential performance in PET image reconstruction.This work was supported by the European Research Council under grant ID 757829 and by Ministerio de Economia y Competitividad for grant FPA2016-78595-C3-1-R.Renner, J.; Romo-Luque, C.; Aliaga, RJ.; Álvarez-Puerta, V.; Ballester Merelo, FJ.; Benlloch-Rodríguez, J.; Carrión, J.... (2022). Monte Carlo characterization of PETALO, a full-body liquid xenon-based PET detector. Journal of Instrumentation. 17(5):1-14. https://doi.org/10.1088/1748-0221/17/05/P0504411417

    Expectation maximization (EM) algorithms using polar symmetriesfor computed tomography(CT) image reconstruction

    Full text link
    We suggest a symmetric-polar pixellation scheme which makes possible a reduction of the computational cost for expectation maximization (EM) iterative algorithms. The proposed symmetric-polar pixellation allows us to deal with 3D images as a whole problem without dividing the 3D problem into 2D slices approach. Performance evaluation of each approach in terms of stability and image quality is presented. Exhaustive comparisons between all approaches were conducted in a 2D based image reconstruction model. From these 2D approaches, that showing the best performances were finally implemented and evaluated in a 3D based image reconstruction model. Comparison to 3D images reconstructed with FBP is also presented. Although the algorithm is presented in the context of computed tomography (CT) image reconstruction, it can be applied to any other tomographic technique as well, due to the fact that the only requirement is a scanning geometry involving measurements of an object under different projection angles. Real data have been acquired with a small animal (CT) scanner to verify the proposed mathematical description of the CT system.This work was supported by the Spanish Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica (I+D+I) under Grant, FIS2010-21216-CO2-01, Valencian Local Government under Grant Nos. PROMETEO 2008/114 and APOSTD/2010/012. The authors would like to thank Brennan Holt for checking and correcting the text.Rodríguez Álvarez, MJ.; Soriano Asensi, A.; Iborra Carreres, A.; Sánchez Martínez, F.; González Martínez, AJ.; Conde, P.; Hernández Hernández, L.... (2013). Expectation maximization (EM) algorithms using polar symmetriesfor computed tomography(CT) image reconstruction. Computers in Biology and Medicine. 43(8):1053-1061. https://doi.org/10.1016/j.compbiomed.2013.04.015S1053106143

    Dependence of polytetrafluoroethylene reflectance on thickness at visible and ultraviolet wavelengths in air

    Full text link
    [EN] Polytetrafluoroethylene (PTFE) is an excellent diffuse reflector widely used in light collection systems for particle physics experiments. However, the reflectance of PTFE is a function of its thickness. In this work, we investigate this dependence in air for light of wavelengths 260 nm and 450 nm using two complementary methods. We find that PTFE reflectance for thicknesses from 5 mm to 10 mm ranges from 92.5% to 94.5% at 450 nm, and from 90.0% to 92.0% at 260 nm We also see that the reflectance of PIFE of a given thickness can vary by as much as 2.7% within the same piece of material. Finally, we show that placing a specular reflector behind the PTFE can recover the loss of reflectance in the visible without introducing a specular component in the reflectance.The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the European Union's Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Grant Agreements No. 674896, 690575 and 740055; the Ministerio de Economia y Competitividad and the Ministerio de Ciencia, Innovacion y Universidades of Spain under grants FIS2014-53371-C04, RTI2018-095979, the Severo Ochoa Program grants SEV-2014-0398 and CEX2018-000867-S, and the Maria de Maeztu Program MDM-2016-0692; the Generalitat Valenciana under grants PROMETEO/2016/120 and SEJI/2017/011; the Portuguese FCT under project PTDC/FIS-NUC/2525/2014 and under projects UID/04559/2020 to fund the activities of LIBPhys-UC; the U.S. Department of Energy under contracts No. DE-AC02-06CH11357 (Argonne National Laboratory), DE-AC0207CH11359 (Fermi National Accelerator Laboratory), DE-FG02-13ER42020 (Texas A&M) and DE-SC0019223/DE-SC0019054 (University of Texas at Arlington); and the University of Texas at Arlington (USA). DGD acknowledges Ramon y Cajal program (Spain) under contract number RYC2015-18820. JM-A acknowledges support from Fundacion Bancaria "la Caixa" (ID 100010434), grant code LCF/BQ/PI19/11690012. Finally, we thank Brendon Bullard, Paolo Giromini and Neeraj Tata for helpful discussions and assistance with preliminary measurements.Ghosh, S.; Haefner, J.; Martín-Albo, J.; Guenette, R.; Li, X.; Loya Villalpando, A.; Burch, C.... (2020). Dependence of polytetrafluoroethylene reflectance on thickness at visible and ultraviolet wavelengths in air. Journal of Instrumentation. 15(11):1-17. https://doi.org/10.1088/1748-0221/15/11/P11031S1171511Auger, M., Auty, D. J., Barbeau, P. S., Bartoszek, L., Baussan, E., Beauchamp, E., … Cleveland, B. (2012). The EXO-200 detector, part I: detector design and construction. Journal of Instrumentation, 7(05), P05010-P05010. doi:10.1088/1748-0221/7/05/p05010Martín-Albo, J., Muñoz Vidal, J., Ferrario, P., Nebot-Guinot, M., Gómez-Cadenas, J. J., … Cárcel, S. (2016). Sensitivity of NEXT-100 to neutrinoless double beta decay. Journal of High Energy Physics, 2016(5). doi:10.1007/jhep05(2016)159Rogers, L., Clark, R. A., Jones, B. J. P., McDonald, A. D., Nygren, D. R., Psihas, F., … Azevedo, C. D. . (2018). High voltage insulation and gas absorption of polymers in high pressure argon and xenon gases. Journal of Instrumentation, 13(10), P10002-P10002. doi:10.1088/1748-0221/13/10/p10002Silva, C., Pinto da Cunha, J., Pereira, A., Chepel, V., Lopes, M. I., Solovov, V., & Neves, F. (2010). Reflectance of polytetrafluoroethylene for xenon scintillation light. Journal of Applied Physics, 107(6), 064902. doi:10.1063/1.3318681Haefner, J., Neff, A., Arthurs, M., Batista, E., Morton, D., Okunawo, M., … Lorenzon, W. (2017). Reflectance dependence of polytetrafluoroethylene on thickness for xenon scintillation light. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 856, 86-91. doi:10.1016/j.nima.2017.01.057Kravitz, S., Smith, R. J., Hagaman, L., Bernard, E. P., McKinsey, D. N., Rudd, L., … Sakai, M. (2020). Measurements of angle-resolved reflectivity of PTFE in liquid xenon with IBEX. The European Physical Journal C, 80(3). doi:10.1140/epjc/s10052-020-7800-6Geis, C., Grignon, C., Oberlack, U., García, D. R., & Weitzel, Q. (2017). Optical response of highly reflective film used in the water Cherenkov muon veto of the XENON1T dark matter experiment. Journal of Instrumentation, 12(06), P06017-P06017. doi:10.1088/1748-0221/12/06/p06017Allison, J., Amako, K., Apostolakis, J., Arce, P., Asai, M., Aso, T., … Barrand, G. (2016). Recent developments in Geant4. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 835, 186-225. doi:10.1016/j.nima.2016.06.12

    Low-diffusion Xe-He gas mixtures for rare-event detection: electroluminescence yield

    Get PDF
    High pressure xenon Time Projection Chambers (TPC) based on secondary scintillation (electroluminescence) signal amplification are being proposed for rare event detection such as directional dark matter, double electron capture and double beta decay detection. The discrimination of the rare event through the topological signature of primary ionisation trails is a major asset for this type of TPC when compared to single liquid or double-phase TPCs, limited mainly by the high electron diffusion in pure xenon. Helium admixtures with xenon can be an attractive solution to reduce the electron diffu- sion significantly, improving the discrimination efficiency of these optical TPCs. We have measured the electroluminescence (EL) yield of Xe–He mixtures, in the range of 0 to 30% He and demonstrated the small impact on the EL yield of the addition of helium to pure xenon. For a typical reduced electric field of 2.5 kV/cm/bar in the EL region, the EL yield is lowered by ∼ 2%, 3%, 6% and 10% for 10%, 15%, 20% and 30% of helium concentration, respectively. This decrease is less than what has been obtained from the most recent simulation framework in the literature. The impact of the addition of helium on EL statistical fluctuations is negligible, within the experimental uncertainties. The present results are an important benchmark for the simulation tools to be applied to future optical TPCs based on Xe-He mixtures. [Figure not available: see fulltext.]

    Boosting background suppression in the NEXT experiment through Richardson-Lucy deconvolution

    Get PDF
    Next-generation neutrinoless double beta decay experiments aim for half-life sensitivities of similar to 10(27) yr, requiring suppressing backgrounds to < 1 count/tonne/yr. For this, any extra background rejection handle, beyond excellent energy resolution and the use of extremely radiopure materials, is of utmost importance. The NEXT experiment exploits differences in the spatial ionization patterns of double beta decay and single-electron events to discriminate signal from background. While the former display two Bragg peak dense ionization regions at the opposite ends of the track, the latter typically have only one such feature. Thus, comparing the energies at the track extremes provides an additional rejection tool. The unique combination of the topology-based background discrimination and excellent energy resolution (1% FWHM at the Q-value of the decay) is the distinguishing feature of NEXT. Previous studies demonstrated a topological background rejection factor of 5 when reconstructing electron-positron pairs in the Tl-208 1.6 MeV double escape peak (with Compton events as background), recorded in the NEXT-White demonstrator at the Laboratorio Subterraneo de Canfranc, with 72% signal efficiency. This was recently improved through the use of a deep convolutional neural network to yield a background rejection factor of similar to 10 with 65% signal efficiency. Here, we present a new reconstruction method, based on the Richardson-Lucy deconvolution algorithm, which allows reversing the blurring induced by electron diffusion and electroluminescence light production in the NEXT TPC. The new method yields highly refined 3D images of reconstructed events, and, as a result, significantly improves the topological background discrimination. When applied to real-data 1.6 MeV e(-)e(+) pairs, it leads to a background rejection factor of 27 at 57% signal efficiency.The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the European Union's Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Grant Agreements No. 674896, 690575 and 740055; the Ministerio de Economia y Competitividad and the Ministerio de Ciencia, Innovacion y Universidades of Spain under grants FIS2014-53371-C04, RTI2018-095979, the Severo Ochoa Program grants SEV-2014-0398 and CEX2018-000867-S, and the Maria de Maeztu Program MDM-2016-0692; the Generalitat Valenciana under grants PROMETEO/2016/120 and SEJI/2017/011; the Portuguese FCT under project PTDC/FIS-NUC/2525/2014 and under projects UID/04559/2020 to fund the activities of LIBPhys-UC; the U.S. Department of Energy under contracts No. DE-AC02-06CH11357 (Argonne National Laboratory), DE-AC02-07CH11359 (Fermi National Accelerator Laboratory), DE-FG02-13ER42020 (Texas A&M) and DE-SC0019223/DE-SC0019054 (University of Texas at Arlington); the University of Texas at Arlington (U.S.A.); and the Pazy Foundation (Israel) under grants 877040 and 877041. DGD acknowledges Ramon y Cajal program (Spain) under contract number RYC-2015-18820. JM-A acknowledges support from Fundacion Bancaria "la Caixa" (ID 100010434), grant code LCF/BQ/PI19/11690012. AS acknowledges support from the Kreitman School of Advanced Graduate Studies at Ben-Gurion University. Documen
    corecore