38 research outputs found

    Purification and characterization of an extracellular amylase from Lactobacillus plantarum strain A6

    Get PDF
    Extracellular amylase from #Lactobacillus plantarum$ A6 was purified by fractionated precipitation with ammonium sulphate and by anion exchange chromatography. The homogeneity of the purified fraction was tested by polyacrylamide gel electrophoresis and showed multiple amylase forms. A major form had an estimated molecular weight of 50 kDa. It was identified as an alpha-amylase, with an optimum pH of 5.5, an optimum temperature of 65°C and Km value of 2.38 g l-1 with soluble starch substrate. The enzyme was inhibited by N-bromosuccinimide, iodine and acetic acid. The enzyme activation energy was 30.9 kJ mol-1. (Résumé d'auteur

    Understanding the relationship between environmental arsenic and prostate cancer aggressiveness among African-American and European-American men in North Carolina

    Get PDF
    High-level exposure to arsenic, a known carcinogen and endocrine disruptor, is associated with prostate cancer (PCa) mortality. Whether low-level exposure is associated with PCa aggressiveness remains unknown. We examined the association between urinary arsenic and PCa aggressiveness among men in North Carolina. This cross-sectional study included 463 African-American and 491 European-American men with newly diagnosed, histologically confirmed prostate adenocarcinoma. PCa aggressiveness was defined as low aggressive (Gleason score < 7, stage = cT1–cT2, and PSA < 10 ng/mL) versus intermediate/high aggressive (all other cases). Total arsenic and arsenical species (inorganic arsenic (iAsIII + iAsV), arsenobetaine, monomethyl arsenic, and dimethyl arsenic)) and specific gravity were measured in spot urine samples obtained an average of 23.7 weeks after diagnosis. Multivariable logistic regression was used to estimate the covariate-adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for PCa aggressiveness in association with arsenic tertiles/quantiles overall and by race. The highest (vs. lowest) tertile of total arsenic was associated with PCa aggressiveness ORs of 1.77 (95% CI = 1.05–2.98) among European-American men, and 0.94 (95% CI = 0.57–1.56) among African-American men (PInteraction = 0.04). In contrast, total arsenic and arsenical species were not associated with PCa aggressiveness in unstratified models. Low-level arsenic exposure may be associated with PCa aggressiveness among European-Americans, but not among African-Americans

    One sixth of Amazonian tree diversity is dependent on river floodplains

    Get PDF
    Amazonia's floodplain system is the largest and most biodiverse on Earth. Although forests are crucial to the ecological integrity of floodplains, our understanding of their species composition and how this may differ from surrounding forest types is still far too limited, particularly as changing inundation regimes begin to reshape floodplain tree communities and the critical ecosystem functions they underpin. Here we address this gap by taking a spatially explicit look at Amazonia-wide patterns of tree-species turnover and ecological specialization of the region's floodplain forests. We show that the majority of Amazonian tree species can inhabit floodplains, and about a sixth of Amazonian tree diversity is ecologically specialized on floodplains. The degree of specialization in floodplain communities is driven by regional flood patterns, with the most compositionally differentiated floodplain forests located centrally within the fluvial network and contingent on the most extraordinary flood magnitudes regionally. Our results provide a spatially explicit view of ecological specialization of floodplain forest communities and expose the need for whole-basin hydrological integrity to protect the Amazon's tree diversity and its function.Naturali

    Author Correction: One sixth of Amazonian tree diversity is dependent on river floodplains

    Get PDF

    Mapping density, diversity and species-richness of the Amazon tree flora

    Get PDF
    Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution

    Integrated global assessment of the natural forest carbon potential

    Get PDF
    Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2,3,4,5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151–363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets

    International nosocomial infection control consortium (INICC) report, data summary of 36 countries, for 2004-2009

    Get PDF
    The results of a surveillance study conducted by the International Nosocomial Infection Control Consortium (INICC) from January 2004 through December 2009 in 422 intensive care units (ICUs) of 36 countries in Latin America, Asia, Africa, and Europe are reported. During the 6-year study period, using Centers for Disease Control and Prevention (CDC) National Healthcare Safety Network (NHSN; formerly the National Nosocomial Infection Surveillance system [NNIS]) definitions for device-associated health care-associated infections, we gathered prospective data from 313,008 patients hospitalized in the consortium's ICUs for an aggregate of 2,194,897 ICU bed-days. Despite the fact that the use of devices in the developing countries' ICUs was remarkably similar to that reported in US ICUs in the CDC's NHSN, rates of device-associated nosocomial infection were significantly higher in the ICUs of the INICC hospitals; the pooled rate of central line-associated bloodstream infection in the INICC ICUs of 6.8 per 1,000 central line-days was more than 3-fold higher than the 2.0 per 1,000 central line-days reported in comparable US ICUs. The overall rate of ventilator-associated pneumonia also was far higher (15.8 vs 3.3 per 1,000 ventilator-days), as was the rate of catheter-associated urinary tract infection (6.3 vs. 3.3 per 1,000 catheter-days). Notably, the frequencies of resistance of Pseudomonas aeruginosa isolates to imipenem (47.2% vs 23.0%), Klebsiella pneumoniae isolates to ceftazidime (76.3% vs 27.1%), Escherichia coli isolates to ceftazidime (66.7% vs 8.1%), Staphylococcus aureus isolates to methicillin (84.4% vs 56.8%), were also higher in the consortium's ICUs, and the crude unadjusted excess mortalities of device-related infections ranged from 7.3% (for catheter-associated urinary tract infection) to 15.2% (for ventilator-associated pneumonia). Copyright © 2012 by the Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved

    Factores personales y socio-familiares asociados al consumo de sustancias adictivas en estudiantes universitarios

    No full text
    Introducción: Una labor esencial de las universidades es contribuir a la mejora de la salud de su alumnado y demás integrantes de la comunidad educativa, atendiendo tanto a aspectos de prevención como de promoción de la salud. Con este trabajo pretendemos profundizar en el conocimiento actual de las variables personales y socio-familiares implicadas en el consumo de sustancias adictivas en estudiantes universitarios. Material y método: Para el desarrollo de este estudio hemos realizado una revisión de las principales investigaciones en este campo, mediante la consulta de las bases de datos ERIC, MedLine, PsycINFO y PubMed (2011-2017). Resultados: Los resultados de nuestro análisis muestran que tener habilidades sociales es una variable personal que actúa como factor protector frente a las adicciones. Asimismo, la práctica de actividad física y otros hábitos de salud pueden ayudar a los jóvenes universitarios a mantenerse alejados de las drogas. Entre los factores socio-familiares destaca el papel protector desempeñado por una buena comunicación y vínculo familiar, así como los beneficios de la pertenencia a un grupo de iguales con aficiones enriquecedoras y saludables. Conclusiones: El consumo de sustancias tóxicas por parte del alumnado universitario se relaciona con múltiples factores, no solo personales (habilidades, hábitos aprendidos, creencias, expectativas, etc.), sino también familiares y sociales. De ahí la necesidad de que, en la medida de lo posible, se contemplen todos ellos dentro de los Proyectos de Universidad Saludable de las diferentes universidades
    corecore