2,862 research outputs found
The biggest mistakes governments made during COVID– and what the future could hold
Christopher Murray (University of Washington) looks at the mistakes made during the pandemic and how its ramifications will play out in the coming years
Forecasting the response of Earth\u27s surface to future climatic and land use changes: A review of methods and research needs
In the future, Earth will be warmer, precipitation events will be more extreme, global mean sea level will rise, and many arid and semiarid regions will be drier. Human modifications of landscapes will also occur at an accelerated rate as developed areas increase in size and population density. We now have gridded global forecasts, being continually improved, of the climatic and land use changes (C&LUC) that are likely to occur in the coming decades. However, besides a few exceptions, consensus forecasts do not exist for how these C&LUC will likely impact Earth-surface processes and hazards. In some cases, we have the tools to forecast the geomorphic responses to likely future C&LUC. Fully exploiting these models and utilizing these tools will require close collaboration among Earth-surface scientists and Earth-system modelers. This paper assesses the state-of-the-art tools and data that are being used or could be used to forecast changes in the state of Earth\u27s surface as a result of likely future C&LUC. We also propose strategies for filling key knowledge gaps, emphasizing where additional basic research and/or collaboration across disciplines are necessary. The main body of the paper addresses cross-cutting issues, including the importance of nonlinear/threshold-dominated interactions among topography, vegetation, and sediment transport, as well as the importance of alternate stable states and extreme, rare events for understanding and forecasting Earth-surface response to C&LUC. Five supplements delve into different scales or process zones (global-scale assessments and fluvial, aeolian, glacial/periglacial, and coastal process zones) in detail. © 2015 The Authors. Earth\u27s Future published by Wiley on behalf of the American Geophysical Union
Outflows at the Edges of an Active Region in a Coronal Hole: A Signature of Active Region Expansion?
Outflows of plasma at the edges of active regions surrounded by quiet Sun are
now a common observation with the Hinode satellite. While there is
observational evidence to suggest that the outflows are originating in the
magnetic field surrounding the active regions, there is no conclusive evidence
that reveals how they are driven. Motivated by observations of outflows at the
periphery of a mature active region embedded in a coronal hole, we have used a
three-dimensional simulation to emulate the active region's development in
order to investigate the origin and driver of these outflows. We find outflows
are accelerated from a site in the coronal hole magnetic field immediately
surrounding the active region and are channelled along the coronal hole field
as they rise through the atmosphere. The plasma is accelerated simply as a
result of the active region expanding horizontally as it develops. Many of the
characteristics of the outflows generated in the simulation are consistent with
those of observed outflows: velocities up to 45 km per sec, properties akin to
the coronal hole, proximity to the active region's draining loops, expansion
with height, and projection over monopolar photospheric magnetic
concentrations. Although the horizontal expansion occurs as a consequence of
the active region's development in the simulation, expansion is also a general
feature of established active regions. Hence, it is entirely possible and
plausible that the expansion acceleration mechanism displayed in the simulation
is occurring in active regions on the Sun and, in addition to reconnection, is
driving the outflows observed at their edges.Comment: 19 pages, 9 figure
‘Because it’s our culture!’ (Re)negotiating the meaning of lobola in Southern African secondary schools
Payment of bridewealth or lobola is a significant element of marriage among the Basotho of Lesotho and the Shona of Zimbabwe. However, the functions and meanings attached to the practice are constantly changing. In order to gauge the interpretations attached to lobola by young people today, this paper analyses a series of focus group discussions conducted among senior students at two rural secondary schools. It compares the interpretations attached by the students to the practice of lobola with academic interpretations (both historical and contemporary). Among young people the meanings and functions of lobola are hotly contested, but differ markedly from those set out in the academic literature. While many students see lobola as a valued part of ‘African culture’, most also view it as a financial transaction which necessarily disadvantages women. The paper then seeks to explain the young people’s interpretations by reference to discourses of ‘equal rights’ and ‘culture’ prevalent in secondary schools. Young people make use of these discourses in (re)negotiating the meaning of lobola, but the limitations of the discourses restrict the interpretations of lobola available to them
Phenomenological constraints on Lemaitre-Tolman-Bondi cosmological inhomogeneities from solar system dynamics
We, first, analytically work out the long-term, i.e. averaged over one
orbital revolution, perturbations on the orbit of a test particle moving in a
local Fermi frame induced therein by the cosmological tidal effects of the
inhomogeneous Lemaitre-Tolman-Bondi (LTB) model. The LTB solution has recently
attracted attention, among other things, as a possible explanation of the
observed cosmic acceleration without resorting to dark energy. Then, we
phenomenologically constrain both the parameters K_1 = -\ddot R/R and K_2 =
-\ddot R^'/R^' of the LTB metric in the Fermi frame by using different kinds of
solar system data. The corrections to the standard
Newtonian/Einsteinian precessions of the perihelia of the inner planets
recently estimated with the EPM ephemerides, compared to our predictions for
them, yield K_1 = (4+8) 10^-26 s^-2, K_2 = (3+7) 10^-23 s^-2. The residuals of
the Cassini-based Earth-Saturn range, compared with the numerically integrated
LTB range signature, allow to obtain K_1/2 = 10^-27 s^-2. The LTB-induced
distortions of the orbit of a typical object of the Oort cloud with respect to
the commonly accepted Newtonian picture, based on the observations of the comet
showers from that remote region of the solar system, point towards K_1/2 <=
10^-30-10^-32 s^-2. Such figures have to be compared with those inferred from
cosmological data which are of the order of K1 \approx K2 = -4 10^-36 s^-2.Comment: LaTex2e, 18 pages, 3 tables, 3 figures. Minor changes. Reference
added. Accepted by Journal of Cosmology and Astroparticle Physics (JCAP
Information Metric on Instanton Moduli Spaces in Nonlinear Sigma Models
We study the information metric on instanton moduli spaces in two-dimensional
nonlinear sigma models. In the CP^1 model, the information metric on the moduli
space of one instanton with the topological charge Q=k which is any positive
integer is a three-dimensional hyperbolic metric, which corresponds to
Euclidean anti--de Sitter space-time metric in three dimensions, and the
overall scale factor of the information metric is (4k^2)/3; this means that the
sectional curvature is -3/(4k^2). We also calculate the information metric in
the CP^2 model.Comment: 9 pages, LaTeX; added references for section 1; typos adde
When unlikely outcomes occur: the role of communication format in maintaining communicator credibility
The public expects science to reduce or eliminate uncertainty (Kinzig & Starrett, 2003), yet scientific forecasts are probabilistic (at best) and it is simply not possible to make predictions with certainty. Whilst an ‘unlikely’ outcome is not expected to occur, an ‘unlikely’ outcome will still occur one in five times (based on a translation of 20%, e.g. Theil, 2002), according to a frequentist perspective. When an ‘unlikely’ outcome does occur, the prediction may be deemed ‘erroneous’, reflecting a misunderstanding of the nature of uncertainty. Such misunderstandings could have ramifications for the subsequent (perceived) credibility of the communicator who made such a prediction. We examine whether the effect of ‘erroneous’ predictions on perceived credibility differs according to the communication format used. Specifically, we consider verbal, numerical (point and range [wide / narrow]) and mixed format probability expressions. We consistently find that subsequent perceptions are least affected by the ‘erroneous’ prediction when it is expressed numerically, regardless of whether it is a point or range estimate. Our findings suggest numbers should be used in consequential risk communications regarding ‘unlikely’ events, wherever possible
Adaptation of Autocatalytic Fluctuations to Diffusive Noise
Evolution of a system of diffusing and proliferating mortal reactants is
analyzed in the presence of randomly moving catalysts. While the continuum
description of the problem predicts reactant extinction as the average growth
rate becomes negative, growth rate fluctuations induced by the discrete nature
of the agents are shown to allow for an active phase, where reactants
proliferate as their spatial configuration adapts to the fluctuations of the
catalysts density. The model is explored by employing field theoretical
techniques, numerical simulations and strong coupling analysis. For d<=2, the
system is shown to exhibits an active phase at any growth rate, while for d>2 a
kinetic phase transition is predicted. The applicability of this model as a
prototype for a host of phenomena which exhibit self organization is discussed.Comment: 6 pages 6 figur
Optical Spectra of SNR Candidates in NGC 300
We present moderate-resolution (<5A) long-slit optical spectra of 51 nebular
objects in the nearby Sculptor Group galaxy NGC 300 obtained with the 2.3 meter
Advanced Technology Telescope at Siding Spring Observatory, Australia. Adopting
the criterion of [SII]/Ha>=0.4 to confirm supernova remnants (SNRs) from
optical spectra, we find that of 28 objects previously proposed as SNRs from
optical observations, 22 meet this criterion with six showing [SII]/Ha of less
than 0.4. Of 27 objects suggested as SNRs from radio data, four are associated
with the 28 previously proposed SNRs. Of these four, three (included in the 22
above) meet the criterion. In all, 22 of the 51 nebular objects meet the
[SII]/Ha criterion as SNRs while the nature of the remaining 29 objects remains
undetermined by these observations.Comment: Accepted for publication in Astrophysics & Space Scienc
Anisotropic Superparamagnetism of Monodispersive Cobalt-Platinum Nanocrystals
Based on the high-temperature organometallic route (Sun et al. Science 287,
1989 (2000)), we have synthesized powders containing CoPt_3 single crystals
with mean diameters of 3.3(2) nm and 6.0(2) nm and small log-normal widths
sigma=0.15(1). In the entire temperature range from 5 K to 400 K, the
zero-field cooled susceptibility chi(T) displays significant deviations from
ideal superparamagnetism. Approaching the Curie temperature of 450(10) K, the
deviations arise from the (mean-field) type reduction of the ferromagnetic
moments, while below the blocking temperature T_b, chi(T) is suppressed by the
presence of energy barriers, the distributions of which scale with the particle
volumes obtained from transmission electron microscopy (TEM). This indication
for volume anisotropy is supported by scaling analyses of the shape of the
magnetic absorption chi''(T,omega) which reveal distribution functions for the
barriers being also consistent with the volume distributions observed by TEM.
Above 200 K, the magnetization isotherms M(H,T) display Langevin behavior
providing 2.5(1) mu_B per CoPt_3 in agreement with reports on bulk and thin
film CoPt_3. The non-Langevin shape of the magnetization curves at lower
temperatures is for the first time interpreted as anisotropic
superparamagnetism by taking into account an anisotropy energy of the
nanoparticles E_A(T). Using the magnitude and temperature variation of E_A(T),
the mean energy barriers and 'unphysical' small switching times of the
particles obtained from the analyses of chi''(T,omega) are explained. Below T_b
hysteresis loops appear and are quantitatively described by a blocking model,
which also ignores particle interactions, but takes the size distributions from
TEM and the conventional field dependence of E_A into account.Comment: 12 pages with 10 figures and 1 table. Version accepted for
publication in Phys. Rev. B . Two-column layou
- …