234 research outputs found

    dartR v2: An accessible genetic analysis platform for conservation, ecology and agriculture

    Get PDF
    Innumerable approaches to analyse genetic data are now available to guide conservation, ecological and agricultural projects. However, streamlined and accessible tools are needed to bring these approaches within the reach of a broader user base. dartR was released in 2018 to lessen the intrinsic complexity of analysing single nucleotide polymorphisms (SNPs) and dominant markers (presence/absence of amplified sequence tags) by providing user-friendly data quality control and marker selection functions. dartR users have grown steadily since its release and provided valuable feedback on their interaction with the package allowing us to enhance dartR capabilities. Here, we present Version 2 of dartR. In this version, we substantially increased the number of available functions from 45 to 144. In addition to improved functionality, we focused on enhancing the user experience by extending plot customisation, function standardisation, increasing user support and function speed. dartR provides functions for various stages in analysing genetic data, from data manipulation to reporting. dartR provides many functions for importing, exporting and linking to other packages, to provide an easy-to-navigate conduit between data generation and analysis options already available via other packages. We also implemented simulation functions whose results can be analysed seamlessly with several other dartR functions. As more methods and approaches mature to inform conservation, we envision that accessible platforms to analyse genetic data will play a crucial role in translating science into practice

    Cluster expansion in the canonical ensemble

    Full text link
    We consider a system of particles confined in a box \La\subset\R^d interacting via a tempered and stable pair potential. We prove the validity of the cluster expansion for the canonical partition function in the high temperature - low density regime. The convergence is uniform in the volume and in the thermodynamic limit it reproduces Mayer's virial expansion providing an alternative and more direct derivation which avoids the deep combinatorial issues present in the original proof

    Langevin Equation for the Rayleigh model with finite-ranged interactions

    Full text link
    Both linear and nonlinear Langevin equations are derived directly from the Liouville equation for an exactly solvable model consisting of a Brownian particle of mass MM interacting with ideal gas molecules of mass mm via a quadratic repulsive potential. Explicit microscopic expressions for all kinetic coefficients appearing in these equations are presented. It is shown that the range of applicability of the Langevin equation, as well as statistical properties of random force, may depend not only on the mass ratio m/Mm/M but also by the parameter Nm/MNm/M, involving the average number NN of molecules in the interaction zone around the particle. For the case of a short-ranged potential, when N1N\ll 1, analysis of the Langevin equations yields previously obtained results for a hard-wall potential in which only binary collisions are considered. For the finite-ranged potential, when multiple collisions are important (N1N\gg 1), the model describes nontrivial dynamics on time scales that are on the order of the collision time, a regime that is usually beyond the scope of more phenomenological models.Comment: 21 pages, 1 figure. To appear in Phys. Rev.

    Phase transitions in the spinless Falicov-Kimball model with correlated hopping

    Full text link
    The canonical Monte-Carlo is used to study the phase transitions from the low-temperature ordered phase to the high-temperature disordered phase in the two-dimensional Falicov-Kimball model with correlated hopping. As the low-temperature ordered phase we consider the chessboard phase, the axial striped phase and the segregated phase. It is shown that all three phases persist also at finite temperatures (up to the critical temperature τc\tau_c) and that the phase transition at the critical point is of the first order for the chessboard and axial striped phase and of the second order for the segregated phase. In addition, it is found that the critical temperature is reduced with the increasing amplitude of correlated hopping tt' in the chessboard phase and it is strongly enhanced by tt' in the axial striped and segregated phase.Comment: 17 pages, 6 figure

    Using the Wigner-Ibach Surmise to Analyze Terrace-Width Distributions: History, User's Guide, and Advances

    Full text link
    A history is given of the applications of the simple expression generalized from the surmise by Wigner and also by Ibach to extract the strength of the interaction between steps on a vicinal surface, via the terrace width distribution (TWD). A concise guide for use with experiments and a summary of some recent extensions are provided.Comment: 11 pages, 4 figures, reformatted (with revtex) version of refereed paper for special issue of Applied Physics A entitled "From Surface Science to Device Physics", in honor of the retirements of Prof. H. Ibach and Prof. H. L\"ut

    Guest Charge and Potential Fluctuations in Two-Dimensional Classical Coulomb Systems

    Full text link
    A known generalization of the Stillinger-Lovett sum rule for a guest charge immersed in a two-dimensional one-component plasma (the second moment of the screening cloud around this guest charge) is more simply retrieved, just by using the BGY hierarchy for a mixture of several species; the zeroth moment of the excess density around a guest charge immersed in a two-component plasma is also obtained. The moments of the electric potential are related to the excess chemical potential of a guest charge; explicit results are obtained in several special cases.Comment: 21 pages. Latex. Appendix moved, with changes, to new subsection 2.3. Description of the Appendix at the end of the Introduction, from an earlier version, delete

    Reply to Elmendorf and Ettinger: Photoperiod playsa dominantand irreplaceable role in triggering secondary growth resumption

    Get PDF
    In their Letter, Elmendorf and Ettinger (1) question the dominant role of photoperiod in driving secondary growth resumption (hereafter referred to as xylem formation onset) of the Northern Hemisphere conifers, recently reported by Huang et al. (2). Their opinions are grounded on the following three aspects, including 1) the seasonality of the photoperiod, 2) the dependence of the predictor variables (e.g., photoperiod, forcing, and chilling) on the response variable (the date of onset of xylem formation, day of the year [DOY]), and 3) the limited value of the obtained models for interannual forecasting. We think they bring up an interesting issue that deserves further discussion and clarification. Photoperiod is acknowledged to regulate spring bud swelling while wood formation starts (3, 4). Although photoperiod seasonality occurs at each site, its influence is marginal in our study given that the analysis involved comparisons among sites across the Northern Hemisphere. Our conclusion that photoperiod plays a dominant role was built upon the combination of several coherent pieces of evidence, rather than “the crux of Huang et al….” as they pointed out. First, we clearly stated that model 2, which modeled DOY as a function of the mean annual temperature of the site (MAT), forcing, chilling, and soil moisture, was considered the best model in terms of parsimony according to minimum Akaike information criterion and Bayesian information criterion, rather than R2 as referred to in their Letter. Second, photoperiod interacted with MAT and can explain 61.7% of the variance of MAT alone (2). Therefore, we concluded that secondary growth resumption was driven primarily by MAT and photoperiod or by their interaction, which is challenging to be disentangled without experimental data, we agree. In terms of biological functioning, they play an ..

    Development of a versatile laboratory experiment to teach the metabolic transformation of hydrolysis

    Get PDF
    In this paper we describe an easy, reliable, versatile and inexpensive laboratory experiment to teach the metabolic transformation of hydrolysis to Pharmacy students. The experiment does not require the sacrifice of any experimental animal, or any work with organs or tissues, and so can be implemented in a typical university chemistry laboratory. We used acetylsalicylic acid (ASA), hexyl salicylate (HS) and two enzymes, a lipase and an esterase. Since both ASS and HS liberate salicylic acid (SA) upon hydrolysis, students can evaluate the different enzymatic transformations by monitoring the amount of SA liberated. The learning outcomes are an enhanced student understanding of: (1) the process of hydrolysis; (2) the application of enzymatic transformations of molecules from food to xenobiotics; (3) the differences between the general specificity of substrate of both enzymes; (4) the concepts of the lipophilic pocket; (5) the catalytic triad and its regioselectivity in relation to the ester bond. A questionnaire was administered to participating students at three points in time: at the beginning of the module, after enzymatic hydrolysis was taught in class, and after the laboratory experiment. From an analysis of the questionnaire data we conclude that this practical helped Pharmacy students to understand these concepts

    Germline MBD4-deficiency causes a multi-tumor predisposition syndrome

    Get PDF
    We report an autosomal recessive, multi-organ tumor predisposition syndrome, caused by bi-allelic loss-of-function germline variants in the base excision repair (BER) gene MBD4. We identified five individuals with bi-allelic MBD4 variants within four families and these individuals had a personal and/or family history of adenomatous colorectal polyposis, acute myeloid leukemia, and uveal melanoma. MBD4 encodes a glycosylase involved in repair of G:T mismatches resulting from deamination of 5′-methylcytosine. The colorectal adenomas from MBD4-deficient individuals showed a mutator phenotype attributable to mutational signature SBS1, consistent with the function of MBD4. MBD4-deficient polyps harbored somatic mutations in similar driver genes to sporadic colorectal tumors, although AMER1 mutations were more common and KRAS mutations less frequent. Our findings expand the role of BER deficiencies in tumor predisposition. Inclusion of MBD4 in genetic testing for polyposis and multi-tumor phenotypes is warranted to improve disease management
    corecore