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In their Letter, Elmendorf and Ettinger (1) question the
dominant role of photoperiod in driving secondary
growth resumption (hereafter referred to as xylem for-
mation onset) of the Northern Hemisphere conifers, re-
cently reported by Huang et al. (2). Their opinions are
grounded on the following three aspects, including 1)
the seasonality of the photoperiod, 2) the dependence
of the predictor variables (e.g., photoperiod, forcing, and
chilling) on the response variable (the date of onset of
xylem formation, day of the year [DOY]), and 3) the lim-
ited value of the obtained models for interannual fore-
casting. We think they bring up an interesting issue that
deserves further discussion and clarification.

Photoperiod is acknowledged to regulate spring
bud swelling while wood formation starts (3, 4). Al-
though photoperiod seasonality occurs at each site,
its influence is marginal in our study given that the
analysis involved comparisons among sites across
the Northern Hemisphere. Our conclusion that photo-
period plays a dominant role was built upon the com-
bination of several coherent pieces of evidence, rather
than “the crux of Huang et al. . ..” as they pointed out.
First, we clearly stated that model 2, which modeled
DOY as a function of the mean annual temperature of
the site (MAT), forcing, chilling, and soil moisture, was
considered the best model in terms of parsimony
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according to minimum Akaike information criterion and Bayesian
information criterion, rather than R2 as referred to in their Letter.
Second, photoperiod interacted with MAT and can explain 61.7%
of the variance of MAT alone (2). Therefore, we concluded that
secondary growth resumption was driven primarily by MAT and
photoperiod or by their interaction, which is challenging to be
disentangled without experimental data, we agree. In terms of
biological functioning, they play an undoubtedly relevant role in
secondary growth resumption, as explained in Huang et al. (2)
and Delpierre et al. (5). In contrast, Elmendorf and Ettinger do
not provide any biological reason why photoperiod would not
control secondary growth resumption, but acknowledge that
“on a yearly basis plants may rely on cues beyond average tem-
perature.” Finally, following Elmendorf and Ettinger’s approach,
we found that their models lack biological foundation and their
findings are at least questionable or even unrealistic. Therefore,
we moderately adapted their code to avoid unrealistic aspects,
resulting in more consistent insights than those they reported
(Figs. 1 and 2).

According to traditional definitions, several exogenous factors
were calculated and retained in the final models after rigorous
statistical screening, such as collinearity tests. More importantly,
these models are biologically sound and provide perspectives for
driving future mechanistically related experimental designs, al-
though we agree that statistical models are imperfect approxi-
mations to reality.

The recently developed microsampling technique used in Huang
et al. (2) provides high time-resolution (weekly) data of xylogenesis for
refining our knowledge on wood formation during the growing sea-
son. Therefore, we advocate applying our weekly data-based mod-
eling results into earth system models to better understanding of
carbon, water, and energy cycles at intra-annual scale (6), rather than
at interannual scale that can be better assessed by dendroecology (7).
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Fig. 1. Simulated phenological data [adapted from Elmendorf and Ettinger (1)], produced using mean annual temperature (MAT), latitude, and
seasonal temperature variation (estimated for each site as the long-termmean difference between July and January temperatures). (A) Simulated
time-series of temperature by Elmendorf and Ettinger (sigma = 4), without an evident seasonal trend. Lines are simulated temperature series for
each site and year, and the color represents the latitude. The black line represents the mean daily temperature for all sites. (B) Simulated
time-series of temperature, considering mean annual temperature, temperature seasonality, and with a given level of “noise” (sigma = 4). The
detailed equation is as follows: Tt = MAT – (TJul – TJan)/2 × cos(2 × π/365 × (t – 15)) + Error; where Tt is temperature for the DOY of the year (t),
MAT is mean annual temperature, TJul (TJan) is the long-term mean temperature in July (January), and Error is the noise added (sigma = 4). The
vertical line in blue (dash in black) gives the mean day of the year (DOY) observed (simulated) of wood formation onset for all studied sites. The
black line represents the mean daily temperature for all sites. (C) The phenological data were simulated using forcing unit (FU) thresholds
described in Huang et al. (2). The gray lines represent seasonal forcing accumulation for the site “SIM” (LAT= 48° N), for the period 2002 to 2014.
The horizontal black (blue) line is the mean DOY of onset observed (simulated) for the site “SIM.” The dots are simulated dates of wood formation
onset at this site. Our simulated data varied forcing units required for onset of wood formation (FU) with latitude, as previously described by
Huang et al. (2). (D) A linear relationship is found between DOY at the beginning of wood formation (DOYwf) and MAT; the root-mean-square
error (RMSE) of the simulated temperature and simulated (observed) phenology appears in black (blue). The color dots show dates of wood
formation onset, with colors indicating latitude (legend on the Right of the panel). (E) Linear relationship between DOYwf and photoperiod. Color
lines show continuous patterns in photoperiod across the spring. For the observed phenology, the RMSE (in blue) for the photoperiod (E) is
higher than the RMSE for MAT (D), which is held for sigma values in the range 0 to 10. For estimated phenology, the RMSE (in black) for the
photoperiod (E) is higher than for MAT (D); for time-series of simulated temperature with high noise level (sigma > 5) the photoperiod shows a
lower RMSE than MAT, but the simulated DOYwf (horizontal black line in C) deviates from the observed DOYwf (horizontal blue line in C). We
found that photoperiod becomes a stronger predictor of phenology for high sigma values (>5), while for lower values of sigma phenology is
mainly predicted by MAT alone.
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Fig. 2. Predictive performance of the date of wood formation onset (DOYwf) based on forcing, latitude, mean annual temperature (MAT), and
photoperiod. Linear mixedmodels were fitted on randomly sampled subsets of the data, in each iteration 25% of sites were dropped (to evaluate
the importance of environmental variables across spatial gradients in driving phenology; for each iteration the testing dataset consisted of sites in
the latitude range used for training to reduce the bias introduced by the low distribution of sites at low and high latitudes) or a single year (to
access the importance of environmental conditions on phenology at the temporal scale; only sites with phenological data over 3 y were
considered; for each site 1 y was randomly sampled for testing and the remainder used for training). For latitude and MAT, we modeled the
DOYwf directly (e.g., DOYwf ∼ MAT + random effects), producing a DOYwf prediction for the evaluation subset. For forcing, chilling, and
photoperiod, we used the threshold value of the environmental variable at xylogenesis as the response variable (e.g., FUwf ∼ Intercept+ random
effects), and then used the simulated daily meteorological data with the modeled thresholds to predicted DOYwf (e.g., the first DOY where FU
exceeds the predicted FUwf for a given site, species, and year). The predictive performance of each model was defined as the difference in
predictive accuracy (root-mean-square error [RMSE] of predicted vs. observed DOYwf) in relation to a null model with no environmental drivers for
each iteration (n = 100). A negative (positive) δRMSE(model–null) indicates that model with environmental drivers explains more (less) variation
than the null model. In the spatial cross-validation (A), the proportion of negative δRMSE(model–null) is 0.01 for MAT, while MAT presents a
proportion of 0.11 negative δRMSE in the temporal analysis (B). Overall, the predictive performance of the models (A and B) is better than
Elmendorf and Ettinger reported. Adapted with permission from ref. 1.
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