19 research outputs found

    The Sample Analysis at Mars Investigation and Instrument Suite

    Full text link

    Analysis of aromatic carboxylic acid and calcium salt couples with gas chromatography-mass spectrometry: Implications and comparison with in situ measurements at Mars' surface

    No full text
    International audienceAromatic organic salts such as benzoates or phthalates may be widespread degradation products of organic molecules at the surface of Mars. The low volatility of these aromatic carboxylic salts could have compromised their detection through thermal extraction in situ analyses such as those performed by the Viking landers. However, over the years, analytical chemistry laboratories on board current and future Martian surface missions, such as the Sample Analysis at Mars (SAM) instrument suite on board the Curiosity rover and the Mars Organic Molecule Analyzer (MOMA) instrument of the Rosalind Franklin ExoMars rover, respectively, have evolved. These instruments have improved in efficiency to detect refractory and polar organic compounds, which could influence the detection of aromatic organic salts. To evaluate the capability of detecting aromatic organic salts on Mars with in situ instruments, we performed laboratory experiments under Viking, SAM, and MOMA-like Gas Chromatography-Mass Spectrometry (GC–MS) conditions with two carboxylic acid/salt couples: phthalic acid/calcium phthalate and benzoic acid/calcium benzoate. We studied the behavior and signatures of both molecular forms when using pyrolysis and derivatization experiments and the implications of these results in the search for organic molecules on Mars. This study showed that the Viking experiments could not have detected the presence of aromatic carboxylic salts in Martian samples because its maximum pyrolysis temperature was too low (500 °C). However, we showed that calcium benzoate and calcium phthalate, despite their refractory nature, could be identified indirectly through the detection of thermal and derivatized degradation products, both with SAM and MOMA. No conclusive proof of the presence of these aromatic organic salt species have been found in the SAM in situ data but given the right instrumental set-up they could be detected if present. The conclusions of this work raise essential questions on the detectability of refractory molecules, the analytical efficiency of flight instruments, and the interpretation of in situ data

    Steroids, triterpenoids and molecular oxygen

    No full text
    There is a close connection between modern-day biosynthesis of particular triterpenoid biomarkers and presence of molecular oxygen in the environment. Thus, the detection of steroid and triterpenoid hydrocarbons far back in Earth history has been used to infer the antiquity of oxygenic photosynthesis. This prompts the question: were these compounds produced similarly in the past? In this paper, we address this question with a review of the current state of knowledge surrounding the oxygen requirement for steroid biosynthesis and phylogenetic patterns in the distribution of steroid and triterpenoid biosynthetic pathways. The hopanoid and steroid biosynthetic pathways are very highly conserved within the bacterial and eukaryotic domains, respectively. Bacteriohopanepolyols are produced by a wide range of bacteria, and are methylated in significant abundance at the C2 position by oxygen-producing cyanobacteria. On the other hand, sterol biosynthesis is sparsely distributed in distantly related bacterial taxa and the pathways do not produce the wide range of products that characterize eukaryotes. In particular, evidence for sterol biosynthesis by cyanobacteria appears flawed. Our experiments show that cyanobacterial cultures are easily contaminated by sterol-producing rust fungi, which can be eliminated by treatment with cycloheximide affording sterol-free samples. Sterols are ubiquitous features of eukaryotic membranes, and it appears likely that the initial steps in sterol biosynthesis were present in their modern form in the last common ancestor of eukaryotes. Eleven molecules of O(2) are required by four enzymes to produce one molecule of cholesterol. Thermodynamic arguments, optimization of function and parsimony all indicate that an ancestral anaerobic pathway is highly unlikely. The known geological record of molecular fossils, especially steranes and triterpanes, is notable for the limited number of structural motifs that have been observed. With a few exceptions, the carbon skeletons are the same as those found in the lipids of extant organisms and no demonstrably extinct structures have been reported. Furthermore, their patterns of occurrence over billion year time-scales correlate strongly with environments of deposition. Accordingly, biomarkers are excellent indicators of environmental conditions even though the taxonomic affinities of all biomarkers cannot be precisely specified. Biomarkers are ultimately tied to biochemicals with very specific functional properties, and interpretations of the biomarker record will benefit from increased understanding of the biological roles of geologically durable molecules

    Planning considerations related to the organic contamination of martian samples and implications for the Mars 2020 rover

    Get PDF
    © Copyright 2014, Mary Ann Liebert, Inc. Data gathered during recent NASA missions to Mars, particularly by the Rovers Spirit, Opportunity, and Curiosity, have provided important insights into the past history and habitability of the Red Planet. The Mars science community, via input through the National Research Council (NRC) Planetary Science Decadal Survey Committee, also identified the prime importance of a Mars sample return (MSR) mission to further exploration of the Red Planet. In response, the Mars 2020 Mission (Mars 2020) Science Definition Team (SDT) (Mustard et al., 2013) was chartered by the NASA Mars Exploration Program to formulate a new rover mission that would take concrete steps toward an eventual sample return. The SDT recommended that the 2020 rover should select and cache scientifically compelling samples for possible return to Earth. They also noted that organic contamination of the samples was a significant and complex issue that should be independently investigated by a future committee. Accordingly, NASA chartered the Mars 2020 Organic Contamination Panel (OCP). The OCP was charged with evaluating and recommending sample contamination requirements for the proposed Mars 2020. A further task was to assess implementation approaches in support of the investigation of broad scientific questions concerning the history and habitability of Mars. Central to these objectives would be the ability to reliably differentiate indigenous martian organic molecules from terrestrial contamination in any future samples returned from Mars. Early on during its deliberations, the OCP recognized that the scientific and planetary protection (PP) objectives of MSR are intimately linked, in that both rely heavily on measurements of organic molecules in the returned samples. In each case, a key aspect of the problem is being able to recognize and interpret organic molecules as indigenous to Mars against a potential background of Earthsourced contamination. It was within this context that the OCP committee considered the structure for a set of measurement goals related to organic molecules in the returned samples that would be of common interest to science and PP. The following is a summary of the most significant findings of the OCP regarding organic geochemical measurements that would be shared for both science and PP in relation to potential future MSR

    Constraining Alteration Processes Along the Siccar Point Group Unconformity, Gale Crater, Mars: Results from the Sample Analysis at Mars Instrument

    Get PDF
    International audienceResults from the Sample Analysis at Mars (SAM)-evolved gas analyzer (EGA) on board the Mars Science Laboratory Curiosity rover constrained the alteration history and habitability potential of rocks sampled across the Siccar Point unconformity in Gale crater.The Glasgow member (Gm) mudstone just below the unconformity had evidence of acid sulfate or Si-poor brine alteration of Fe-smectite to Fe amorphous phases, leaching loss of Fe-Mg-sulfate and exchange of unfractionated sulfur 34S (δ34S=2±7‰) with enriched 34S (20±5‰, V-CDT). Carbon abundances did not significantly change (322-661 μgC/g) consistent with carbon stabilization by amorphous Al- and Fe-hydroxide phases. The Gm mudstone had no detectable oxychlorine and extremely low nitrate. Nitrate (0.06 wt.% NO3), oxychlorine (0.13 wt% ClO4), high C (1472 μg C/g), and low Fe/Mg-sulfate concentration (0.24 wt.% SO3) depleted in 34S (δ34S = -27‰ ± 7), were detected in the Stimson formation (Sf) eolian sandstone above the unconformity. Redox disequilibrium through the detections of iron sulfide and sulfate supported limited aqueous processes in the Sf sandstone. Si-poor brines or acidic fluids altered the Gm mudstone just below the unconformity but did not alter underlying Gm mudstones further from the contact. Chemical differences between the Sf and Gm rocks suggested that fluid interaction was minimal between the Sf and Gm rocks. These results suggested that the Gm rocks were altered by subsurface fluids after the Sf placement. Aqueous processes along the unconformity could have provided habitable conditions and in some cases, C and N levels could have supported heterotrophic microbial populations

    Mars' surface radiation environment measured with the Mars science laboratory's curiosity rover

    No full text
    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory’s Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equivalent from galactic cosmic rays and solar energetic particles on the martian surface for ~300 days of observations during the current solar maximum. These measurements provide insight into the radiation hazards associated with a human mission to the surface of Mars and provide an anchor point with which to model the subsurface radiation environment, with implications for microbial survival times of any possible extant or past life, as well as for the preservation of potential organic biosignatures of the ancient martian environment
    corecore