1,506 research outputs found

    A Tight Karp-Lipton Collapse Result in Bounded Arithmetic

    Get PDF
    Cook and Krajíček [9] have obtained the following Karp-Lipton result in bounded arithmetic: if the theory proves , then collapses to , and this collapse is provable in . Here we show the converse implication, thus answering an open question from [9]. We obtain this result by formalizing in a hard/easy argument of Buhrman, Chang, and Fortnow [3]. In addition, we continue the investigation of propositional proof systems using advice, initiated by Cook and Krajíček [9]. In particular, we obtain several optimal and even p-optimal proof systems using advice. We further show that these p-optimal systems are equivalent to natural extensions of Frege systems

    Topological Charged Black Holes in High Dimensional Spacetimes and Their Formation from Gravitational Collapse of a Type II Fluid

    Full text link
    Topological charged black holes coupled with a cosmological constant in R2×XD2R^{2}\times X^{D-2} spacetimes are studied, where XD2X^{D-2} is an Einstein space of the form (D2)RAB=k(D3)hAB{}^{(D-2)}R_{AB} = k(D-3) h_{AB}. The global structure for the four-dimensional spacetimes with k=0k = 0 is investigated systematically. The most general solutions that represent a Type IIII fluid in such a high dimensional spacetime are found, and showed that topological charged black holes can be formed from the gravitational collapse of such a fluid. When the spacetime is (asymptotically) self-similar, the collapse always forms black holes for k=0,1k = 0, -1, in contrast to the case k=1k = 1, where it can form either balck holes or naked singularities.Comment: 14 figures, to appear in Phys. Rev.

    Recalculation of QCD Corrections to bsγb \to s \gamma Decay

    Full text link
    We give a more complete calculation of bsγb \to s\gamma decay, including leading log QCD corrections from mtopm_{top} to MWM_W in addition to corrections from MWM_{W} to mbm_b. We have included the full set of dimension-6 operators and corrected numerical mistakes of anomalous dimensions in a previous paper\cite{Cho}. Comparing with the calculations without QCD running from mtopm_{top} to MWM_W\cite{Mis}, the inclusive decay rate is found to be enhanced. At mt=150m_t=150GeV, it results in 12\% enhancement, and for mt=250m_t=250GeV, 15\% is found. The total QCD effect makes an enhanced factor of 4.2 at mt=150m_t=150GeV, and 3.2 for mt=250m_t=250GeV.Comment: 16 pages, 7 figures (uuencoded ps files), Changes of description. To appear in Phys. Rev.

    Long-Term Protective Effects of Methamphetamine Preconditioning Against Single-Day Methamphetamine Toxic Challenges

    Get PDF
    Methamphetamine (METH) use is associated with neurotoxic effects which include decreased levels of dopamine (DA), serotonin (5-HT) and their metabolites in the brain. We have shown that escalating METH dosing can protect against METH induced neurotoxicity in rats sacrificed within 24 hours after a toxic METH challenge. The purpose of the current study was to investigate if the protective effects of METH persisted for a long period of time. We also tested if a second challenge with a toxic dose of METH would cause further damage to monoaminergic terminals. Saline-pretreated rats showed significant METH-induced decreases in striatal DA and 5-HT levels in rats sacrificed 2 weeks after the challenge. Rats that received two METH challenges showed no further decreases in striatal DA or 5-HT levels in comparison to the single METH challenge. In contrast, METH-pretreated rats showed significant protection against METH-induced striatal DA and 5-HT depletion. In addition, the METH challenge causes substantial decreases in cortical 5-HT levels which were not further potentiated by a second drug challenge. METH preconditioning provided almost complete protection against METH –induced 5-HT depletion. These results are consistent with the idea that METH pretreatment renders the brain refractory to METH-induced degeneration of brain monoaminergic systems

    Validity of Generalized Second Law of Thermodynamics in the Logamediate and Intermediate scenarios of the Universe

    Full text link
    In this work, we have investigated the validity of the generalized second law of thermodynamics in logamediate and intermediate scenarios of the universe bounded by the Hubble, apparent, particle and event horizons using and without using first law of thermodynamics. We have observed that the GSL is valid for Hubble, apparent, particle and event horizons of the universe in the logamediate scenario of the universe using first law and without using first law. Similarly the GSL is valid for all horizons in the intermediate scenario of the universe using first law. Also in the intermediate scenario of the universe, the GSL is valid for Hubble, apparent and particle horizons but it breaks down whenever we consider the universe enveloped by the event horizon

    dS-Holographic C-Functions with a Topological, Dilatonic Twist

    Get PDF
    Recently, the holographic aspects of asymptotically de Sitter spacetimes have generated substantial literary interest. The plot continues in this paper, as we investigate a certain class of dilatonically deformed ``topological'' de Sitter solutions (which were introduced in hep-th/0110234). Although such solutions possess a detrimental cosmological singularity, their interpretation from a holographic perspective remains somewhat unclear. The current focus is on the associated generalized CC-functions, which are shown to maintain their usual monotonicity properties in spite of this exotic framework. These findings suggest that such topological solutions may still play a role in our understanding of quantum gravity with a positive cosmological constant.Comment: Latex, 30 pages; reference added and minor changes to tex

    Existence of weak solutions for the generalized Navier-Stokes equations with damping

    Get PDF
    In this work we consider the generalized Navier-Stokes equations with the presence of a damping term in the momentum equation. The problem studied here derives from the set of equations which govern isothermal flows of incompressible and homogeneous non-Newtonian fluids. For the generalized Navier-Stokes problem with damping, we prove the existence of weak solutions by using regularization techniques, the theory of monotone operators and compactness arguments together with the local decomposition of the pressure and the Lipschitz-truncation method. The existence result proved here holds for any and any sigma > 1, where q is the exponent of the diffusion term and sigma is the exponent which characterizes the damping term.MCTES, Portugal [SFRH/BSAB/1058/2010]; FCT, Portugal [PTDC/MAT/110613/2010]info:eu-repo/semantics/publishedVersio

    A maximum density rule for surfaces of quasicrystals

    Get PDF
    A rule due to Bravais of wide validity for crystals is that their surfaces correspond to the densest planes of atoms in the bulk of the material. Comparing a theoretical model of i-AlPdMn with experimental results, we find that this correspondence breaks down and that surfaces parallel to the densest planes in the bulk are not the most stable, i.e. they are not so-called bulk terminations. The correspondence can be restored by recognizing that there is a contribution to the surface not just from one geometrical plane but from a layer of stacked atoms, possibly containing more than one plane. We find that not only does the stability of high-symmetry surfaces match the density of the corresponding layer-like bulk terminations but the exact spacings between surface terraces and their degree of pittedness may be determined by a simple analysis of the density of layers predicted by the bulk geometric model.Comment: 8 pages of ps-file, 3 Figs (jpg

    Thermodynamics of higher dimensional topological charged AdS black branes in dilaton gravity

    Full text link
    In this paper, we study topological AdS black branes of (n+1)(n+1)-dimensional Einstein-Maxwell-dilaton theory and investigate their properties. We use the area law, surface gravity and Gauss law interpretations to find entropy, temperature and electrical charge, respectively. We also employ the modified Brown and York subtraction method to calculate the quasilocal mass of the solutions. We obtain a Smarr-type formula for the mass as a function of the entropy and the charge, compute the temperature and the electric potential through the Smarr-type formula and show that these thermodynamic quantities coincide with their values which are calculated through using the geometry. Finally, we perform a stability analysis in the canonical ensemble and investigate the effects of the dilaton field and the size of black brane on the thermal stability of the solutions. We find that large black branes are stable but for small black brane, depending on the value of dilaton field and type of horizon, we encounter with some unstable phases.Comment: 21 pages, 21 figures, references updated, minor editing, accepted in EPJC (DOI: 10.1140/epjc/s10052-010-1483-3
    corecore