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Abstract. In this work we consider the generalized Navier–Stokes equa-
tions with the presence of a damping term in the momentum equation.
The problem studied here derives from the set of equations which govern
isothermal flows of incompressible and homogeneous non-Newtonian flu-
ids. For the generalized Navier–Stokes problem with damping, we prove
the existence of weak solutions by using regularization techniques, the the-
ory of monotone operators and compactness arguments together with the
local decomposition of the pressure and the Lipschitz-truncation method.
The existence result proved here holds for any q > 2N

N+2
and any σ > 1,

where q is the exponent of the diffusion term and σ is the exponent which
characterizes the damping term.
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1. Introduction

In this work, we shall study the existence of weak solutions for the generalized
Navier–Stokes equations with damping:

div u = 0 in QT , (1.1)
∂ u
∂ t − div

(
|∇u|q−2∇u − u ⊗ u

)
+ α|u|σ−2u = f − ∇p in QT ; (1.2)

supplemented with the following initial and boundary conditions:

u = u0 in Ω for t = 0, (1.3)
u = 0 on ΓT . (1.4)
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Here QT is a general cylinder defined by

QT := Ω × (0, T ), with ΓT := ∂Ω × (0, T ),

where Ω ⊂ RN , N ≥ 2, is a bounded domain with a compact boundary ∂Ω,
and 0 < T < ∞. In the scope of Mathematical Fluid Mechanics, u is the
velocity field, p stands for the pressure divided by the constant density, f is
the given forcing term and q > 1 is the constant exponent which characterizes
the flow. The constant α is non-negative and σ > 1 is another constant.

The damping term α|u|σ−2u, or sometimes called absorption term, has
no direct physical justification in Fluid Mechanics, although it might be con-
sidered has being part of the external body forces field (see [1–3]). There is also
a precise theory of the absorption of forced plane infinitesimal waves according
to the Navier–Stokes equations (see [23]). The consideration of damping terms
in the generalized Navier–Stokes equations it is also useful as a regularization
procedure to prove the existence of weak solutions (see [13,14]). At last, but not
in last, there is also the purely mathematical motivation which goes back to a
work about a stationary like problem (see [8]), where the authors where mainly
interested with the important question about compact supported solutions for
that problem. During the last years, many authors have worked on these kind
of modified Navier–Stokes type problems, establishing the existence of weak
solutions and proving many other properties has the uniqueness of weak solu-
tions, their regularity and studying its asymptotic behavior. In [18] we proved
the weak solutions of (1.1)–(1.4) extinct in a finite time for q ≥ 2, provided
1 < σ < 2. This property is well known for the generalized Navier–Stokes
problem (1.1)–(1.4) with α = 0 in the case 1 < q < 2. But for q ≥ 2 the
best one can gets are some decays of fractional and exponential order (see
e.g. [7]). In [4] we have studied the problem (1.1)–(1.4) in the particular case
of q = 2. There, we have proved the existence of weak solutions, its unique-
ness and some asymptotic properties. We carried out an analogous study in [5]
for the Oberbeck–Boussinesq version of this problem, where besides the usual
coupling in the buoyancy force, we have considered an extra coupling in the
damping term by considering a temperature-depending function σ. In [10] the
authors have proved the existence of weak and strong solutions for the Cau-
chy problem (1.1)–(1.4) in R3 and with q = 2. The damping term is being
considered in the context of many other physical systems which go from the
Shrödinger equations (see e.g. [11]) to the Euler equations (see e.g. [19]) and
passing by the wave equation (see e.g. [26]).

With respect to the existence of weak solutions for the original generalized
Navier–Stokes problem, i.e. (1.1)–(1.4) with α = 0, the problem was solved in
all its full possible (only the case 1 < q ≤ 2N

N+2 remains an open problem)
extension recently in the work [12]. The first existence results to this problem
was achieved in [16] and [17] for q ≥ 3N+2

N+2 . Only more or less 40 years later it
was possible to improve the existence result for lower values of q. In [25], under
the same assumptions of [16] and [17], it was proved the existence of weak solu-
tions to the problem (1.1)–(1.4) with α = 0 for q ≥ max

{
3N

N+2 ,
N+

√
3N2+4N

N+2

}
.

A lit bit earlier to the work [25], it was proved in [24] the existence of a weak
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solution to the same problem for q > 2N+1
N+2 . Finally in [12] the authors have

extended the result [24] to the case 2N
N+2 < q < 2. It is an open problem to

prove the existence of weak solutions to the problem (1.1)–(1.4) with α = 0 if
1 < q ≤ 2N

N+2 in the case of N > 2.
The plan of this work is the following. In Sect. 1 we introduce the problem

we shall study here and review some results related with our work. Section 2
is devoted to introduce the notation we use throughout the work and to define
the notion of weak solution we shall consider. Here, we also shall state the
main result of this paper: Theorem 2.1. The proof of this result is carried out
from Sects. 3 to 11. In Sect. 12, we make some remarks about our work, in
special, its extensions and limitations.

2. Weak formulation

The notation used throughout this article is largely standard in Mathematical
Fluid Mechanics—see e.g. [17]. We distinguish tensors and vectors from sca-
lars by using boldface letters. For functions and function spaces we will use
this distinction as well. The symbol C will denote a generic constant—gener-
ally a positive one, whose value will not be specified; it can change from one
inequality to another. The dependence of C on other constants or parameters
will always be clear from the exposition. In this paper, the notations Ω or ω
stand always for a domain, i.e., a connected open subset of RN , N ≥ 1. Given
k ∈ N, we denote by Ck(Ω) the space of all k-differentiable functions in Ω.
By C∞

0 (Ω) or D(Ω), we denote the space of all infinity-differentiable functions
with compact support in Ω. The space of distributions over D(Ω) is denoted
by D′(Ω). If X is a generic Banach space, its dual space is denoted by X′.
Let 1 ≤ q ≤ ∞ and Ω ⊂ RN , with N ≥ 1, be a domain. We will use the
classical Lebesgue spaces Lq(Ω), whose norm is denoted by ‖ · ‖Lq(Ω). For any
nonnegative k,Wk,q(Ω) denotes the Sobolev space of all functions u ∈ Lq(Ω)
such that the weak derivatives Dβu exist, in the generalized sense, and are in
Lq(Ω) for any multi-index β such that 0 ≤ |β| ≤ k. In particular, W1,∞(Ω)
stands for the space of Lipschitz functions. The norm in Wk,q(Ω) is denoted
by ‖ · ‖Wk,q(Ω). We define Wk,q

0 (Ω) as the closure of C∞
0 (Ω) in Wk,q(Ω). For

the dual space of Wk,q
0 (Ω), we use the identity (Wk,q

0 (Ω))′ = W−k,q′
(Ω), up

to an isometric isomorphism. Given T > 0 and a Banach space X,Lq(0, T ;X)
and Wk,q(0, T ;X) denote the usual Bochner spaces used in evolutive problems,
with norms denoted by ‖ · ‖Lq(0,T ;X) and ‖ · ‖Wk,q(0,T ;X). By Cw([0, T ];X) we
denote the subspace of L∞(0, T ;X) consisting of functions which are weakly
continuous from [0, T ] into X.

A very important property satisfied by the tensor S = |∇u|q−2∇u and
by the damping term |u|σ−2u is expressed in the following statement (see
e.g. [6] for a proof): For all s ∈ (1,∞) and δ ≥ 0, there exists a constant C,
depending on s and N, such that for all ξ, η ∈ RN , N ≥ 1,

(
|ξ|s−2ξ − |η|s−2η

)
· (ξ − η) ≥ C|ξ − η|2+δ (|ξ| + |η|)s−2−δ

. (2.5)
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In order to define the notion of weak solutions we shall look for, let us
introduce the usual functional setting of Mathematical Fluid Mechanics:

V := {v ∈ C∞
0 (Ω) : div v = 0}; (2.6)

H := closure of V in L2(Ω); (2.7)
Vq := closure of V in W1,q(Ω). (2.8)

The weak solutions we are interested in are usually called in the sense of
Leray-Hopf.

Definition 2.1. Let N ≥ 2 and 1 < q, σ < ∞. Assume that u0 ∈ H and
f ∈ L1(QT ). A vector field u is a weak solution to the problem (1.1)–(1.4), if:
(1) u ∈ L∞(0, T ;H) ∩ Lq(0, T ;Vq) ∩ Lσ(QT );
(2) For every ϕ ∈ C∞(QT ), with divϕ = 0 and suppϕ ⊂⊂ Ω × [0, T ),

−
∫

QT

u · ϕt dxdt+
∫

QT

(
|∇u|q−2∇u − u ⊗ u

)
: ∇ϕdxdt

+α
∫

QT

|u|σ−2u · ϕdxdt =
∫

QT

f · ϕdxdt+
∫

Ω

u0 · ϕ(0) dx.

Here, suppϕ ⊂⊂ Ω × [0, T ) means that both the support of ϕ, suppϕ, and its
closure suppϕ are contained in Ω × [0, T ).

Remark 2.1. Note that Vq ↪→ Lσ(Ω) for σ ≤ q∗, where q∗ is the Sobolev
conjugate of q, i.e. q∗ = Nq

N−q if 1 < q < N, or q∗ = ∞ if q ≥ N. Therefore, in
this case, we look for weak solutions in the class L∞(0, T ;H) ∩ Lq(0, T ;Vq).

Next, we introduce the main result of this work, where it is established the
existence of weak solutions to the problem (1.1)–(1.4) under the minor possi-
ble assumptions on q and σ. We left open only the case of 1 < q ≤ 2N

N+2 , for
N > 2, which will certainly require a different approach.

Theorem 2.1. Let Ω be a bounded domain in RN , N ≥ 2. Assume that

f ∈ Lq′
(0, T ;V′

q), (2.9)

u0 ∈ H. (2.10)

Then, if

q >
2N
N + 2

, (2.11)

there exists a weak solution to the problem (1.1)–(1.4), in the sense of Defini-
tion 2.1, for any σ > 1. Moreover, any weak solution u ∈ Cw([0, T ];H).

In order to simplify the exposition, we shall assume throughout the rest of this
work the following simplified assumption of (2.9)

f = −divF, F ∈ Lq′
(QT ). (2.12)

The main ingredients of the proof of Theorem 2.1 are the results of the local
decomposition of the pressure established in [24] and the Lipschitz–truncation
method in the spirit of [12]. We could also have considered the L∞–truncation
method used in [24], but by this method we cannot achieve an existence result
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for so lower values of q as we can with the Lipschitz–truncation method. The
proof of Theorem 2.1 will be the aim of the next sections.

3. The regularized problem

We start the proof of Theorem 2.1 by considering a regularization of the prob-
lem (1.1)–(1.4) which basically gets rid off the difficulties coming from the
convective term u ⊗ u. Let Φ ∈ C∞([0,∞)) be a non-increasing function such
that 0 ≤ Φ ≤ 1 in [0,∞),Φ ≡ 1 in [0, 1],Φ ≡ 0 in [2,∞) and 0 ≤ −Φ′ ≤ 2.
ε > 0, we set

Φε(s) := Φ(εs), s ∈ [0,∞), (3.13)

and let us consider the following regularized problem:

div uε = 0 in QT , (3.14)

∂ uε

∂ t
−div

(
|∇uε|q−2∇uε−uε ⊗ uεΦε(|uε|)

)
+α|uε|σ−2uε = f−∇pε in QT ,

(3.15)

uε = u0 in Ω for t = 0, (3.16)
uε = 0 on ΓT . (3.17)

A vector function uε ∈ L∞(0, T ;H)∩Lq(0, T ;Vq)∩Lσ(QT ) is a weak solution
to the problem (3.14)–(3.17), if

−
∫

QT

uε · ϕt dxdt+
∫

QT

(
|∇uε|q−2∇uε − uε ⊗ uεΦε(|uε|)

)
: ∇ϕdxdt

+α
∫

QT

|uε|σ−2uε · ϕdxdt =
∫

QT

F : ∇ϕdxdt+
∫

Ω

u0 · ϕ(0) dx (3.18)

for all ϕ ∈ C∞(QT ), with divϕ = 0 and suppϕ ⊂⊂ Ω × [0, T ).

Proposition 3.1. Let the assumptions of Theorem 2.1 be fulfilled. Then, for each
ε > 0, there exists a weak solution uε ∈ Lq(0, T ;Vq) ∩ Cw([0, T ];H) ∩ Lσ(QT )
to the problem (3.14)–(3.17). In addition, every weak solution satisfies to the
following energy equality:
1
2
‖uε(t)‖2

H +
∫

Qt

|∇uε|qdxdt+α
∫

Qt

|uε|σdxdt =
1
2
‖u0‖2

H+
∫

Qt

F : ∇uεdxdt

(3.19)

for all t ∈ (0, T ).

Proof. The proof of Proposition 3.1 is adapted from the proof of [24, Theorem
3.1]. The difference here is the presence of an extra term which results from
the damping and the aspect of the diffusion term. We shall split this proof
into three steps.
First Step. Let T∗ ∈ (0, T ] be arbitrarily chosen and let us set

MT∗ := {
 ∈ L2(0,T∗;H) : ‖
‖L2(0,T∗;H) ≤ 1}.



802 H. B. de Oliveira NoDEA

Observing that by the property (2.5), the diffusion term is monotonous as
well the damping term, we can use the theory of monotone operators (cf. [17,
Section 2.1], see also [9, Section 9]) to prove that for each
 ∈ MT∗ , there exists
a weak solution υ ∈ L∞(0, T∗;H) ∩ Lq(0, T∗;Vq) ∩ Lσ(QT∗) to the following
system:

div υ = 0 in QT∗ , (3.20)

∂ υ

∂ t
−div(|∇υ|q−2∇υ) + α|υ|σ−2υ= f − ∇p−div(
 ⊗
Φε(|
|)) in QT∗ ,

(3.21)

υ = u0 in Ω for t = 0, (3.22)

υ = 0 on ΓT∗ . (3.23)

Since the diffusion and damping terms satisfy to the monotonicity property
(2.5), we can prove, by the application of Gronwall’s lemma, that the weak
solution to the problem (3.20)–(3.23) is unique (see e.g. [17, Section 2.1.3]).
Second Step. As a consequence of the previous step, we can define a mapping

K : MT∗ → L2(0,T∗;H) (3.24)

such that to each
∈MT∗ associates the unique weak solution υ∈L∞(0, T∗;H)
∩ Lq(0, T∗;Vq) ∩ Lσ(QT∗). Testing formally (3.21) by the unique weak solu-
tion υ := K(
), with 
 ∈ MT∗ , integrating over Qt, with 0 < t < T∗, using
Young’s inequality and, at last, the definition of Φε(|
|), we achieve to

‖υ‖2
L∞(0,T∗;H) + C1

∫

QT∗

|∇υ|qdxdt+ C2

∫

QT∗

|υ|σdxdt

≤ γ1 + γ2‖
‖2
L2(0,T∗;H), γ1 := ‖u0‖2

H + C3

∫

QT∗

|F|q′
dxds, γ2 := C4.

(3.25)

Then setting T∗ := min {1/(γ1 + γ2), T} , we can prove, from (3.25) and due
to the fact that 
 ∈ MT∗ , that

‖K(
)‖2
L2(0,T∗;H) ≤ T∗(γ1 + γ2) ≤ 1 (3.26)

for all 
 ∈ MT∗ . This proves that K maps MT∗ into itself.
On the other hand, in order to prove the compactness of K, we obtain

from (3.25) that

‖K(
)‖Lq(0,T∗;Vq) ≤ C−1
1 (γ1 + γ2) (3.27)

for all 
 ∈ MT∗ . Owing to the assumptions (2.10) and (2.12), the right hand
side of (3.27) is finite. Then, for the distributive time derivative υ′ := (K(
))′,
with 
 ∈ MT∗ , we can prove that

‖div
(
|∇υ|q−2∇υ −
 ⊗
Φε(|
|) − F

)
‖Lq′ (0,T∗;V′

q) + ‖|υ|σ−2υ‖Lσ′ (QT∗ )<∞

and consequently

υ′ ∈ Lq′
(0,T∗;V′

q) + Lσ′
(QT∗). (3.28)
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In fact, by virtue of (3.25), it follows the uniform boundedness of |∇υ|q−2∇υ in
Lq′

(QT∗) and of |υ|σ−2υ in Lσ′
(QT∗). By assumption (2.12), F ∈ Lq′

(QT∗). On
the other hand, using the definition of Φε, we can prove that ‖
 ⊗
Φε(|
|)
‖q′

Lq′ (QT∗ )
≤ C‖
‖2

L2(0,T∗;H). By (3.27) and (3.28), and once the following com-

pact and continuous imbeddings Vq ↪→↪→ H ↪→ V′
q hold for q > 2N

N+2 , we can
apply Aubin–Lions compactness lemma (cf. [21]) to prove that K(MT∗) is rel-
atively compact in Lq(0, T∗;H). Then, since υ ∈ L∞(0,T∗;H), by parabolic
interpolation it follows that K(MT∗) is relatively compact in L2(0,T∗;H).

To prove the continuity of K, we consider a sequence 
m in MT∗ such
that


m → 
 in L2(0,T∗;H) as m → ∞.

By the relative compactness of K(MT∗) in L2(0,T∗;H), there exists a subse-
quence 
mk

such that

K(
mk
) → υ in L2(0,T∗;H), as k → ∞. (3.29)

From the definition of K, the functions υmk
:= K(
mk

) satisfy to

−
∫

QT∗

υmk
· ϕt dxdt+

∫

QT∗

|∇υmk
|q−2∇υmk

: ∇ϕdxdt

+α
∫

QT∗

|υmk
|σ−2υmk

· ϕdxdt

=
∫

QT∗

(F +
mk
⊗
mk

Φε(|
mk
|)) : ∇ϕdxdt+

∫

Ω

u0 · ϕ(0) dx (3.30)

for all ϕ ∈ C∞(QT∗), with divϕ = 0 and suppϕ ⊂⊂ Ω × [0, T∗). Passing to
the limit in (3.30) by using the appropriated convergence results (see [24, p.
119] and [9, p. 236]) and the usual Minty trick (see e.g. [17, pp. 212–214]), we
can prove that υ = K(
). The only difference here is that |υmk

|σ−2υmk
→ υ̃

weakly in Lσ′
(QT∗), as k → ∞. Since υmk

→ υ weakly in Lσ(QT∗), as k → ∞,
there exists a subsequence, still denoted by υmk

, such that υmk
→ υ a.e. in

QT∗ . In addition, because |υmk
|σ−2υmk

is uniformly bounded in Lσ′
(QT∗), we

can apply Lesbesgue’s theorem of dominated convergence to prove that

|υmk
|σ−2υmk

→ |υ|σ−2υ strongly in Lσ′
(QT∗) (3.31)

and, as a consequence, υ̃ = |υ|σ−2υ. From (3.29), we conclude that K(
m) →
K(
) in L2(0,T∗;H) as m → ∞, which proves the continuity of K.

Now, applying Schauder’s fixed point theorem, there exists a function
υT∗ ∈ MT∗ such that K(υT∗) = υT∗ and which is a weak solution to the
problem (3.14)–(3.17) in the cylinder QT∗ .
Third Step. Testing (3.15) by the weak solution υT∗ , integrating over QT∗ , pro-
ceeding as we did for (3.25) and observing that due to the definition of Φε the
term resulting from convection is zero, we obtain

‖υT∗(T∗)‖2
H ≤ C

(
‖u0‖2

H + ‖F‖q′

Lq′ (QT∗ )

)
. (3.32)
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Then we can implement a continuation argument as follows. Applying the local
existence result provided by Steps 1 and 2 above but with the initial condition
υT∗(T∗), we get a weak solution υ2T∗ in the cylinder Q2T∗ := Ω× [T∗, 2T∗]. It is
an easy task to verify that υ2T∗ satisfies (3.32) too. Continuing in this manner
and after finitely many steps, we can construct a weak solution existing in the
full cylinder QT .

Finally, the energy relation (3.19) follows by testing (3.15) by a weak
solution and integrating over Qt with 0 < t < T∗. �

4. Existence of approximative solutions

Let uε ∈ Lq(0,T;Vq)∩L∞(0,T;H)∩Lσ(QT) be a weak solution to the prob-
lem (3.14)–(3.17). From Proposition 3.1 (see (3.19)), we can prove that

‖uε‖2
L∞(0,T;H) +

∫

QT

|∇uε|qdxdt+
∫

QT

|uε|σdxdt ≤ C, (4.33)

where, by the assumptions (2.10) and (2.12), C is a positive constant which
does not depend on ε. From (4.33) we obtain

‖uε‖2
L∞(0,T ;H) + ‖uε‖q

Lq(0,T;Vq) ≤ C, (4.34)

‖uε‖Lσ(QT ) ≤ C. (4.35)

Using (4.34) and (4.35), it follows that

‖|∇uε|q−2∇uε‖Lq′ (QT ) ≤ C, (4.36)

‖|uε|σ−2uε‖Lσ′ (QT ) ≤ C. (4.37)

On the other hand, by using (4.34) and the Sobolev imbedding Lq(0, T ;Vq) ∩
L∞(0, T ;H) ↪→ Lq N+2

N (QT ) (see [17, p. 213]), we can prove that

‖uε‖
Lq N+2

N (QT)
≤ C. (4.38)

As a consequence of (4.38) and of the definition of Φε (see (3.13)),

‖uε ⊗ uεΦε(|uε|)‖
Lq N+2

2N (QT )
≤ C. (4.39)

Note that the constants in (4.34)–(4.39) are distinct and do not depend on ε.
From (4.34)–(4.39), there exists a sequence of positive numbers εm such that
εm → 0, as m → ∞, and
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uεm
→ u weakly in Lq(0,T;Vq), as m → ∞, (4.40)

uεm
→ u weakly in Lσ(QT ), as m → ∞, (4.41)

|∇uεm
|q−2∇uεm

→ S weakly in Lq′
(QT ), as m → ∞, (4.42)

|uεm
|σ−2uεm

→ ũ weakly in Lσ′
(QT ), as m → ∞, (4.43)

uεm
→ u weakly in LqN+2

N (0,T;Vq), as m → ∞, (4.44)

uεm
⊗ uεm

Φεm
(|uεm

|) → G weakly in Lq N+2
2N (QT ), as m → ∞. (4.45)

Here we observe that using (4.43) and arguing as in the proof of Proposition 3.1
(see (3.31)), we can prove that

|uεm
|σ−2uεm

→ |u|σ−2u strongly in Lσ′
(QT ). (4.46)

As a consequence, we ca write ũ = |u|σ−2u. Then, using the convergence
results (4.40)–(4.46), we can pass to the limit εm → 0 in (3.18) with uε replaced
by uεm

, to obtain

−
∫

QT

u · ϕt dxdt+ α

∫

QT

|u|σ−2u · ϕdxdt

+
∫

QT

(S − G − F) : ∇ϕdxdt =
∫

Ω

u0 · ϕ(0) dx (4.47)

for all ϕ ∈ C∞(QT ), with divϕ = 0 and suppϕ ⊂⊂ Ω × [0, T ).

5. Convergence of the approximative convective term

In this section we shall prove that G = u ⊗ u. We start by observing that,
from (3.18), it follows that

−
∫

QT

uεm
· ϕt dxdt+ α

∫

QT

|uεm
|σ−2uεm

· ϕdxdt

+
∫

QT

(
|∇uεm

|q−2∇uεm
− uεm

⊗ uεm
Φεm

(|uεm
|) − F

)
: ∇ϕdxdt = 0

(5.48)

for all ϕ ∈ C∞
0 (QT ) with divϕ = 0. Then, from (2.12), (4.36) and (4.39), we

have

Qεm
:= |∇uεm

|q−2∇uεm
− uεm

⊗ uεm
Φεm

(|uεm
|) − F ∈ Lr(QT ) (5.49)

for any r satisfying to

1 < r ≤ min
{
q(N + 2)

2N
, q′
}
. (5.50)

Using (4.37) and (5.49)–(5.50), we can obtain, from (5.48), that the distribu-
tive time derivatives

u′
εm

∈ Lr(0, T ;W−1,r(Ω)) + Lσ′
(QT ). (5.51)
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Due to the admissible range for r (see (5.50)), there always exists a γ > 1 such
that the following compact and continuous imbeddings hold

W1,q
0 (Ω) ↪→↪→ Lγ(Ω) ↪→ W−1,r(Ω), ((r′)∗)′ ≤ γ < q∗, (5.52)

where q∗ is the Sobolev conjugate of q and r′ is the Hölder conjugate of r.
Then, using Aubin–Lions compactness lemma (cf. Simon [21]), we obtain from
(4.40) together with (5.51) and (5.52), and passing to a subsequence, that

uεm
→ u strongly in Lr(0, T ;Lγ(Ω)), as m → ∞. (5.53)

Using parabolic interpolation, we obtain from (4.34) and (5.53) that

uεm
→ u strongly in Ls(0, T ;Lγ(Ω)) ∀ s : 1 ≤ s < ∞, as m → ∞.

(5.54)

Now, observing that q > 2N
N+2 is equivalent to q∗ > qN+2

N , we can choose γ
such that qN+2

N ≤ γ < q∗ and, in view of (5.54),

uεm
→ u strongly in Ls(QT ), s = q

N + 2
N

, as m → ∞.

In consequence

uεm
⊗ uεm

Φεm
(|uεm

|)→u ⊗ u strongly in Lq N+2
2N (QT ), as m→∞. (5.55)

Finally, from (4.45) and (5.55), we conclude that G = u ⊗ u.

6. Weak continuity

We start this section by proving that

u ∈ Cw([0, T ];H). (6.56)

We observe that, from (4.47), the distributive time derivative ut is uniquely
defined by

〈ut, ϕ〉 = 〈div(S − G) − α|u|σ−2u + F, ϕ〉 ∀ ϕ ∈ C∞
0 (0, T ;Y), (6.57)

where

Y := Vq ∩ Vκ ∩ Lσ(QT ) ∩ H, κ :=
(
q(N + 2)

2N

)′
. (6.58)

Then we can prove that

ut ∈ L
N+1

N (0, T ;Y′). (6.59)

In fact, due to (4.42) and (4.43), immediately follows that div S ∈ L
N+1

N (0, T ;
V′

q) and |u|σ−2u ∈ Lσ′
(QT ), respectively. By assumption (2.12), F ∈ L

N+1
N (0,

T ;V′
q). That divG ∈ L

N+1
N (0, T ;V′

κ) follows by (4.45) if k′ = qN+2
2N , which

in fact is true by our choice of k (cf. (6.58)).
Next, let t0 ∈ [0, T ] be fixed and let tk be a sequence in [0, T ] such that

tk → t0, as k → ∞, and such that u(tk) ∈ H ∀ k ∈ N.
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Then we consider the continuous representant of u in C(0, T ;Y′), which exists
by virtue of (6.57) and (6.59). Finally by means of reflexivity in H and of the
continuous and dense imbedding of H into Y′, we can prove that

u(tk) → u(t0) weakly in H, as k → ∞,

and whence (6.56).
Now, let us prove that for every t ∈ [0, T ]

uεm
(t) → u(t) weakly in H, as m → ∞. (6.60)

Due to (4.34), there exists a subsequence uεmk
(t) ∈ H such that

uεmk
(t) → η weakly in H, as m → ∞.

Arguing as we did for (6.57) and (6.59), the distributive time derivative u′
εmk

∈
L

N+1
N (0, T ;Y′) and is uniquely defined by

〈u′
εmk

, ϕ〉 = 〈div(|∇uεmk
|q−2∇uεmk

− uεmk
⊗ uεmk

Φεmk
(|uεmk

|))
−α|uεmk

|σ−2uεmk
+ F, ϕ〉 (6.61)

for all ϕ ∈ C∞
0 (0, T ;Y). In particular, there holds uεmk

∈ C(0, T ;Y′). Next, we
introduce η in (6.61), we use integration by parts and we carry out the passage
to the limit in the resulting equation by using the convergence results (4.40)–
(4.45). Combining this equation with the one which results from inserting η
into (6.57) and integrating by parts, we obtain u(t) = η, which yields (6.60).
Finally, combining (6.56) and (6.60), we see that also uεm

satisfies to (6.56).

7. Auxiliary results for decomposing the pressure

Here we make a break in the proof of Theorem 2.1 to show that the results
of [12] concerned with the local decomposition of the pressure still hold in
the case of the momentum equation modified by the presence of the damping
term. For, let ω′ be a fixed but arbitrary open bounded subset of Ω such that

ω′ ⊂⊂ Ω and ∂ω′ ∈ C2. (7.62)

Given s such that 1 < s < ∞, lets us consider the following auxiliary function
spaces related with the Helmholtz–Weyl decomposition (cf. [24, Section 2], see
also [15, Section III.1] and [20]):

As(ω′) := {a ∈ Ls(ω′) : a = �f, f ∈ W2,s
0 (ω′)}; (7.63)

Ḃs(ω′) :=
{
b ∈ Bs(ω′) :

∫

ω′
b dx = 0

}
, Bs(ω′) := {b ∈ Ls(ω′) : �b = 0}.

(7.64)

Proposition 7.1. Let Q ∈ Ls1(ω′
T ),q ∈ Ls2(ω′

T ), with 1 < s1, s2 < ∞, and

u ∈ Cw([0, T ];H) (7.65)

where here H is defined over ω′. Suppose that

−
∫

ω′
T

u · ϕt dxdt+
∫

ω′
T

Q : ∇ϕdxdt+
∫

ω′
T

q · ϕdxdt = 0 (7.66)
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for all ϕ ∈ C∞
0 (ω′

T ) with divϕ = 0 and where ω′
T = ω′ × (0, T ) and ω′ satisfies

to (7.62). Then there exist unique functions

p0 ∈ Ls0(0, T ;As0(ω′)), (7.67)

p̃h ∈ Cw([0, T ]; Ḃs0(ω′)), (7.68)

where s0 can be taken such that

1 < s0 ≤ min {s1, s2}, (7.69)

such that

−
∫

ω′
T

u · ϕt dxdt+
∫

ω′
T

Q : ∇ϕdxdt+
∫

ω′
T

q · ϕdxdt

=
∫

ω′
T

p0divϕdxdt−
∫

ω′
T

p̃h ∂divϕ
∂ t

dxdt+
∫

ω′
u(0) · ϕ(0) dt (7.70)

for all ϕ ∈ C∞(ω′
T ), with suppϕ ⊂⊂ ω′ × [0, T ). In addition, the following

estimates hold

‖p0‖Ls0 (ω′
T ) ≤ C1

(
‖Q‖Ls1 (ω′

T ) + ‖q‖Ls2 (ω′
T )

)
, (7.71)

‖p̃h‖L∞(0,T ;Ls0 (ω′)) ≤ C2

(
‖u‖L∞(0,T ;L2(ω′)) + ‖Q‖Ls1 (ω′

T ) + ‖q‖Ls2 (ω′
T )

)
.

(7.72)

where C1 and C2 are positive constants depending only on si (i = 0, 1, 2), N
and ω′

T .

Proof. Let ψ ∈ C∞
0 (ω′) with divψ = 0 and let η ∈ C∞

0 (0, T ). Inserting ϕ = ψη
into (7.66) and using Fubini’s theorem, we obtain

−
∫ T

0

αη′ dt =
∫ T

0

βη dt+
∫ T

0

γη dt,

where for t ∈ [0, T ]

α(t) :=
∫

ω′
u(t) · ψ dx, β(t) :=

∫

ω′
Q(t) : ∇ψ dx, γ(t) :=

∫

ω′
q(t) · ψ dx.

Since Q ∈ Ls1(ω′
T ) and q ∈ Ls2(ω′

T ), we have β ∈ Ls1(0, T ) and γ ∈ Ls2(0, T ).
In consequence, α ∈ W1,s0(ω′

T ) for any s0 such that 1 < s0 ≤ min{s1, s2}.
By Sobolev’s imbedding theorem, α is represented by a continuous function,
which we still denote by α. Using integration by parts, we can represent

α(t) = α(0) +
∫ t

0

β(s) ds+
∫ t

0

γ(s) ds ∀ t ∈ (0, T ). (7.73)

Let t ∈ (0, T ) be arbitrarily chosen. Using Fubini’s theorem, the identity (7.73)
reads ∫

ω′

[
(u(t) − u(0)) · ψ + q̃(t) · ψ + Q̃(t) : ∇ψ

]
dx = 0,

where

Q̃(t) :=
∫ t

0

Q(s) ds, q̃(t) :=
∫ t

0

q(s) ds.
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Now, by the results of M.E. Bogovskĭi (cf. [15, Theorem III.3.1]) and of
K.I. Piletskas (cf. [15, Theorem III.5.2]), there exists a unique function

p̃(t) ∈ Ls0(ω′) with
∫

ω′
p̃(t) dx = 0

such that
∫

ω′

[
(u(t) − u(0)) · ψ + q̃(t) · ψ + Q̃(t) : ∇ψ

]
dx =

∫

ω′
p̃(t)divψ dx (7.74)

for all ψ ∈ W1,s′
0

0 (ω′). In addition,

‖p̃h(t)‖Ls0 (ω′) ≤ C
(
‖u(t) − u(0)‖Ls0 (ω′) + ‖Q̃(t)‖Ls0 (ω′) + ‖q̃(t)‖Ls0 (ω′)

)
.

(7.75)

On the other hand, by the application of Helmholtz–Weyl decomposition of
Ls0(ω′) (cf. [20, Theorem 1.4]), there exist p̃0(t) ∈ As0(ω′) and p̃h(t) ∈ Ḃs0(ω′)
such that

p̃(t) = p̃0(t) + p̃h(t) in ω′ (7.76)

and where Ar(ω′) and Ḃr(ω′) are defined in (7.63)–(7.63). Moreover, the sum
As0(ω′) + Ḃs0(ω′) is direct. Now, from (7.74) and, as a consequence of the
assumption (7.65), we can infer that

p̃ ∈ Cw([0, T ]; Ls0(ω′)). (7.77)

From (7.76) and (7.77) it follows that

p̃0 ∈ Cw([0, T ];As0(ω′)). (7.78)

p̃h ∈ Cw([0, T ]; Ḃs0(ω′)). (7.79)

As a consequence of (7.75), (7.76), we can derive (7.72). Moreover, inserting
ψ = ∇φ in (7.74), for φ ∈ C∞

0 (ω′), using (7.76), integrating by parts the result-
ing equation and observing that, in view of (7.79), �p̃h = 0, and, in view of
(7.65), divu = 0, we obtain

∫

ω′

(
q̃(t) · ∇φ+ Q̃(t) : ∇2φ

)
dx =

∫

ω′
p̃0(t)�φdx (7.80)

for all φ ∈ C∞
0 (ω′). Now, using (7.80) and proceeding as in [24, pp. 115–116],

we can prove that p̃0 ∈ W1,s0(0, T ;As0(ω′)) and

‖p0‖Ls0 (ω′
T ) ≤ C

(
‖Q‖Ls1 (ω′

T ) + ‖q‖Ls2 (ω′
T )

)
, where p0 :=

∂ p̃0

∂ t
(7.81)

and the constant C depends only on si (i = 1, 2, 3), N and ω′
T . Whence (7.71)

holds. Finally, the identity (7.70) follows by integrating (7.74) over (0, T ),
replacing there ϕ by ∂ ϕ

∂ t and using (7.76), (7.78), (7.79) and the definition of
p0 given in (7.81). The uniqueness of p0 and p̃h follow from (7.71) and (7.72),
respectively. �
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8. Decomposition of the pressure

Let us continue with the proof of Theorem 2.1. Using the results of the pre-
vious section, we shall decompose the pressure into two different components.
For, let ω′ be a domain in the conditions of the previous section (see (7.62)).
Clearly, in view of (5.48) and with the notation introduced in (5.49), we can
write

−
∫

ω′
T

uεm
· ϕt dxdt+ α

∫

ω′
T

|uεm
|σ−2uεm

· ϕdxdt+
∫

ω′
T

Qεm
: ∇ϕdxdt = 0

(8.82)

for all ϕ ∈ C∞
0 (ω′

T ) with divϕ = 0 and where ω′
T := ω′ × (0, T ). The results

(8.82) and (6.56) allow us to apply Proposition 7.1 with Q = Qεm
,q =

α|uεm
|σ−2uεm

, s1 = r, s2 = σ′ and

s0 = r0 := min{r, σ′}. (8.83)

Observe that by (5.50), r ≤ 2 and consequently r0 ≤ 2. Therefore we can say
that exist unique functions

p0
εm

∈ Lr0(0, T ; Ar0(ω′)), (8.84)

p̃h
εm

∈ Cw([0, T ]; Ḃr0(ω′)), (8.85)

such that

−
∫

ω′
T

uεm
· ϕt dxdt+ α

∫

ω′
T

|uεm
|σ−2uεm

· ϕdxdt+
∫

ω′
T

Qεm
: ∇ϕdxdt

=
∫

ω′
T

p0
εm

divϕdxdt−
∫

ω′
T

p̃h
εm

∂divϕ
∂ t

dxdt+
∫

ω′
u0 · ϕ(0) dt (8.86)

for all ϕ ∈ C∞(ω′
T ), with suppϕ ⊂⊂ ω′ × [0, T ). In addition, by the same

result, the following estimates hold

‖p0
εm

‖Lr0 (ω′
T ) ≤ C1

(
‖Qεm

‖Lr(ω′
T ) + ‖uεm

‖Lσ′ (ω′
T )

)
, (8.87)

‖p̃h
εm

‖L∞(0,T ;Lr0 (ω′)) ≤C2

(
‖uεm

‖L∞(0,T ;H) + ‖Qεm
‖Lr(ω′

T ) + ‖uεm
‖Lσ′ (ω′

T )

)
,

(8.88)

where C1 and C2 are positive constants depending only on q, σ′, N and ω′
T .

Then, from (8.84) and (8.85) and by means of reflexivity, we get, passing to a
subsequence if needed, that

p0
εm

→ p0 in Lr(0, T ; Ar0(ω′)), as m → ∞, (8.89)

p̃h
εm

→ p̃h in LN+1(0, T ; Ḃr0(ω′)), as m → ∞. (8.90)

Now we pass to the limit m → ∞ in (8.86) by using the convergence results
(4.40), (4.42), (4.43) and (4.45), together with the identities ũ = |u|σ−2u
and G = u ⊗ u, and also the convergence results (8.89) and (8.90). Then we
compare this limit equation with that one resulting from applying (8.86) to
the limit equation (4.47), considered for all ϕ ∈ C∞

0 (ω′
T ), with divϕ = 0,

and with the aforementioned identities. This procedure yields the existence of
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unique functions p0 and p̃h satisfying to (8.84)–(8.88). Then, since p0 and p̃h

are uniquely defined, we see that

p0 = p0 and p̃h = p̃h.

Proceeding as in [24, p. 126], letting a be such that 1 < a < ∞, using the well-
known local regularity theory, the compact imbedding W3,a(ω) ↪→ W2,a(ω)
and Lebesgue’s theorem of dominated convergence, we can prove that

p̃h
εm

→ p̃h strongly in La(0, T ;W2,a(ω)), as m → ∞, (8.91)

where ω is a fixed but arbitrary open bounded subset of Ω such that

ω ⊂⊂ ω′ ⊂⊂ Ω, with ∂ω Lipschitz. (8.92)

Let us set now

vεm
:= uεm

+ ∇p̃h
εm
, (8.93)

v := u + ∇p̃h. (8.94)

Then, combining (8.86) with this same equation when we pass it to the limit
m → ∞, and using the definition of the distributive time derivative, we obtain

(vεm
− v)′ = div (|∇uεm

|q−2∇uεm
− S) − α

(
|uεm

|σ−2uεm
− |u|σ−2u

)

− div(uεm
⊗ uεm

Φεm
(|uεm

|)−u ⊗ u)−∇(p0
εm

−p0) in D′(ω′
T )

(8.95)

Proceeding as for (5.51), attending to (8.89) and observing that r0 ≤ r, we can
prove that

(vεm
− v)′ ∈ Lr0(0, T ;W−1,r0(ω′)) + Lσ′

(ω′
T ).

Now we shall decompose the pressure term (p0
εm

− p0) in (8.95) into three new
functions. For that, we need to invoke the following results, whose proofs follow
immediately from [24, Lemmas 2.3 and 2.4].

Lemma 8.1. Let 1 < s < ∞ and k ∈ N.

(1) Then for every v∗ ∈
(
Wk,s′

0 (ω)
)′

there exists a unique v ∈ Wk,s
0 (U) such

that
∫

ω

Dαv Dαϕdx = 〈v∗, ϕ〉 ∀ ϕ ∈ C∞
0 (ω), |α| = k.

(2) In addition, if exists H ∈ Ls(ω) such that

〈v∗, ϕ〉 =
∫

ω

HDαϕdx ∀ ϕ ∈ C∞
0 (ω), |α| = k,

then

‖Dαv‖Ls(ω) ≤ C‖H‖Ls(ω),

where C is a positive constant depending on s and on the Calderón–
Zigmund inequality’s constant.
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By a direct application of the first part of Lemma 8.1, attending to (4.42),
(4.43) and (4.45), and to the definitions of Aq′

(ω′) and Aq N+2
2N (ω′), there exist

unique functions

p1
εm

∈ Lq′
(0, T ; Aq′

(ω′)), (8.96)

p2
εm

∈ Lq N+2
2N (0, T ; Aq N+2

2N (ω′)), (8.97)

p3
εm

∈ Lσ′
(0, T ;W1,σ′

0 (ω′)), (8.98)

such that
∫

ω′
T

p1
εm

�φdxdt =
∫

ω′
T

(|∇uεm
|q−2∇uεm

− S) : ∇2φdxdt, (8.99)

∫

ω′
T

p2
εm

�φdxdt = −
∫

ω′
T

(uεm
⊗ uεm

Φεm
(|uεm

|) − u ⊗ u) : ∇2φdxdt, (8.100)

∫

ω′
T

p3
εm

�φdxdt = α

∫

ω′
T

(
|uεm

|σ−2uεm
− |u|σ−2u

)
· ∇φdxdt (8.101)

for all φ ∈ C∞
0 (ω′

T ). In addition, by (8.99)–(8.101) and a direct application of
the second part of Lemma 8.1, the following estimates hold:

‖p1
εm

‖Lq′ (ω′
T ) ≤ C1‖|∇uεm

|q−2∇uεm
− S‖Lq′ (ω′

T ); (8.102)

‖p2
εm

‖
Lq N+2

2N (ω′
T )

≤ C2‖uεm
⊗ uεm

Φεm
(|uεm

|) − u ⊗ u‖
Lq N+2

2N (ω′
T )

; (8.103)

‖∇p3
εm

‖Lσ′ (ω′
T ) ≤ C3‖|uεm

|σ−2uεm
− |u|σ−2u‖Lσ′ (ω′

T ); (8.104)

where C1, C2 and C3 are positive constants depending on q′, qN+2
2N and σ′,

respectively, and on the Calderón–Zigmund inequality’s constant (C3 depends
also on α). Next, testing (8.95) by ∇φ, with φ ∈ C∞

0 (ωT ), integrating over
ωT and using (3.14) and (7.68) together with (7.63), and also the identities
(8.99)–(8.101), we obtain

p0
εm

− p0 = p1
εm

+ p2
εm

+ p3
εm
.

Inserting this into (8.95), it follows that

(vεm
− v)′ = div

(
|∇uεm

|q−2∇uεm
− S

)
− α

(
|uεm

|σ−2uεm
− |u|σ−2u

)

−div (uεm
⊗ uεm

Φεm
(|uεm

|) − u ⊗ u) in D′(ωT ).
−∇p1

εm
− ∇p2

εm
− ∇p3

εm
(8.105)

9. Definition of the irregularity regions

Let us consider the following slight modification of the functions (8.93)–(8.94)

wεm
:= (vεm

− v)χωT
≡
(
uεm

+ ∇p̃h
εm

−
(
u + ∇p̃h

))
χωT

, (9.106)

where χωT
denotes the characteristic function of the set ωT := ω × (0, T ) and

ω satisfies to (8.92). Having in mind the extension of (8.105) to RN+1, here
we shall consider that
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Q1
εm

:= S − |∇uεm
|q−2∇uεm

| + p1
εm

I, (9.107)

Q2
εm

:= uεm
⊗ uεm

Φεm
(|uεm

|) − u ⊗ u + p2
εm

I, (9.108)

qεm
:= α

(
|uεm

|σ−2uεm
− |u|σ−2u

)
+ ∇p3

εm
, (9.109)

are extended from ωT to RN+1 by zero. Now, since q < q∗, we can use (5.54),
with s = γ = q, together with (8.91), with a = q, to prove that

wεm
→ 0 strongly in Lq(RN+1), as m → ∞. (9.110)

Moreover, using (4.34) and again (8.91) with a = q, we obtain

‖∇wεm
‖Lq(RN+1) ≤ C. (9.111)

On the other hand, due to (4.42) and (8.102), we have

‖Q1
εm

‖Lq′ (RN+1) ≤ C. (9.112)

Moreover, (5.55) together with (8.103), and (4.46) together with (8.104), jus-
tify, respectively, that

Q2
εm

→ 0 strongly in L
q(N+2)

2N (RN+1), as m → ∞, (9.113)

qεm
→ 0 strongly in Lσ′

(RN+1), as m → ∞. (9.114)

In order to define the irregularity regions of the admissible function that
we shall test in (8.105), let us set

fεm
:= M∗(|wεm

|), (9.115)

gεm
:= M∗(|∇wεm

|) +
(
M∗(|Q1

εm
|)
) 1

q−1 , (9.116)

hεm
:=

(
M∗(|Q2

εm
|)
) 1

q−1 , (9.117)

iεm
:= (M∗(|qεm

|))
1

q−1 , (9.118)

where M∗ := Mt ◦ Mx. Here Mt and Mx denote the Hardy-Littlewood
maximal operators, which are defined, for some function f ∈ Lp(RN+1) with
1 < p < ∞, respectively by

Mt(f)(x, t) := sup
0<r<∞

1
2r

∫ t+r

t−r

|f(x, s)| ds,

Mx(f)(x, t) := sup
0<R<∞

1
LN (BR(x))

∫

BR(x)

|f(y, s)| dy,

where BR(x) denotes the ball of RN centered at x and with radius R > 0 and
LN (ω) is the N -dimensional Lesbesgue measure of ω. Then due to the bound-
edness of the operator M∗ from Lp(RN+1) into Lp(RN+1) for any p > 1 (see
e.g. [22, p. 5]), we obtain

‖fεm
‖Lq(RN+1) ≤ C‖wεm

‖Lq(RN+1), (9.119)

‖gεm
‖Lq(RN+1) ≤ C1‖∇wεm

‖Lq(RN+1) + C2‖Q1
εm

‖
1

q−1

Lq′ (RN+1)
, (9.120)

‖M∗(|Q2
εm

|)‖
Lq N+2

2N (RN+1)
≤ C‖Q2

εm
‖
Lq N+2

2N (RN+1)
, (9.121)

‖M∗(|qεm
|)‖Lσ′ (RN+1) ≤ C‖qεm

‖Lσ′ (RN+1). (9.122)
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Next, let jεm
be anyone of the functions inside the norms on the left-hand

sides of (9.119)–(9.122) and let s be the respective Lebesgue exponent. Using
(9.111)–(9.114), (9.119)–(9.122) and arguing as in [12, p. 31], we obtain for
j ∈ N

‖jεm
‖s
Ls(RN+1) ≥ 2j ln(2) inf

22j ≤τ<22j+1
τsLN+1

({
(x, t) ∈ RN+1 : |jεm

| > τ
})
.

As a consequence, there exists λm,j ∈
[
22j

, 22j+1
)

such that

LN+1

{
(x, t) ∈ RN+1 : |jεm

| > λm,j

}
≤ C2−jλ−p

m,j ‖jεm
‖Lp(RN+1). (9.123)

Let us consider the following subsets of RN+1

Fm,j := {(x, t) : |fεm
| > λm,j}, (9.124)

Gm,j := {(x, t) : |gεm
| > λm,j}, (9.125)

Hm,j := {(x, t) : |hεm
| > λm,j} ≡

{
(x, t) : M∗(|Q2

εm
| > λq−1

m,j

}
, (9.126)

Im,j := {(x, t) : |iεm
| > λm,j} ≡

{
(x, t) : M∗(|qεm

| > λq−1
m,j

}
. (9.127)

Then, using (9.123) in each case separately, we obtain

LN+1(Fm,j) ≤ C2−jλ−q
m,j ‖fεm

‖Lq(RN+1), (9.128)

LN+1(Gm,j) ≤ C2−jλ−q
m,j ‖gεm

‖Lq(RN+1), (9.129)

LN+1(Hm,j) ≤ C2−jλ
−(q−1)q N+2

2N
m,j |M∗(|Q2

εm
|)‖

Lq N+2
2N (RN+1)

, (9.130)

LN+1(Im,j) ≤ C2−jλ
−(q−1)σ′

m,j ‖M∗(|qεm
|)‖Lσ′ (RN+1). (9.131)

Now, since λm,j ∈
[
22j

, 22j+1
]
, we observe that (9.110), (9.119) and (9.128)

on the one hand, (9.113), (9.121) and (9.130) on the other, and yet (9.114),
(9.122) and (9.131) on another one, imply, respectively,

lim sup
m→∞

LN+1(Fm,j)=0, lim sup
m→∞

LN+1(Hm,j)=0, lim sup
m→∞

LN+1(Im,j)=0.

(9.132)

Moreover, since M∗ is subadditive (see e.g. [22]), we get from the definitions
of Gm,j ,Hm,j and Im,j in (9.125)–(9.127), using (9.129)–(9.131) and (9.116)–
(9.118), that

Gm,j ∪Hm,j ∪ Im,j ⊃ O, (9.133)

where

O :=
{
(x, t) ∈ RN+1 : M∗ (|∇wεm

|)
+ρm,j

[
M∗ (∣∣Q1,2

εm

∣
∣)+ M∗ (|qεm

|)
]
> 4λm,j

}
,

ρm,j := λ2−q
m,j (9.134)

and, with the notations of (9.107)–(9.108),

Q1,2
εm

:= Q1
εm

+ Q2
εm
. (9.135)
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Setting

Em,j := (Fm,j ∪Gm,j ∪Hm,j ∪ Im,j) ∩ ωT , (9.136)

we can readily see that due to (9.128)–(9.131), (9.119)–(9.122) and to (9.110)–
(9.114),

lim sup
m→∞

LN+1(Em,j) ≤ lim sup
m→∞

C2−jλ−q
m,j . (9.137)

Moreover, due to (9.133), we have

(O ∪ U) ∩ ωT ⊂ Em,j ⊂ ωT , (9.138)

where here U is the set Fm,j defined in (9.124).

10. Construction of a Lipschitz truncation

We are now in conditions to define the truncation we shall consider here. Let
us consider the following family of cubes

Cρm,j
rn

(xn, tn) :=
{
(y, s) ∈ RN+1 : dρm,j

((xn, tn), (y, s)) < rn
}
, (10.139)

where rn > 0, n ∈ N and dρm,j
is the metric defined by

dρm,j
((xn, tn), (y, s)) := max

{
|y − xn|,

√
ρ−1

m,j |s− tn|
}
. (10.140)

By [22, Theorem VI.1.1])), there exists a Whitney covering of Em,j formed by
the family of cubes (10.139)–(10.140) such that

⋃

n∈N

Cρm,j
1
2 rn

(xn, tn) = Em,j .

Moreover, by [22, Section VI.1.3], there exists a partition of unity ψn, n ∈ N,
associated to the Whitney covering (10.139)–(10.140) such that

∑

k∈N

ψk = 1 in Cρm,j
rn

(xn, tn).

We are now in conditions to define the Lipschitz truncation. Following [12,
Section 3] and [22, Chapter VI], we define the Lipschitz truncation of wεm

subordinated to the Whitney covering (10.139)–(10.140) by

Tm,j(wεm
) :=

⎧
⎨

⎩

wεm
in ωT \ Em,j∑∞

n=1
ψnwεm |Cρm,j

rn (xn,tn)
in Em,j . (10.141)

The idea of this truncation, is to regularize the function wεm
by cutting off

the regions Em,j of irregularity and then to extend this restricted function by
the Whitney covering (10.139)–(10.140) to the whole domain again.

Now, let ξ ∈ C∞
0 (ωT ) be a fixed cut-off function such that 0 ≤ ξ ≤ 1 in

ωT and let us consider the following admissible test function for (8.105)

φm,j := ξ Tm,j(wεm
). (10.142)
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In order to establish the main properties of the Lipschitz truncation (10.141)
we are interested in, let

ωξ
T := supp ξ, ξ is the cut-off function of (10.142). (10.143)

Note that ωξ
T is strictly contained in ωT , because 0 ≤ ξ ≤ 1 in ωT . Let also

C0,1
ρm,j

(ωξ
T ) be the space of all Lipschitz continuous functions with respect to

the metric (10.140). From the definition of wεm
(see (9.106)), using (4.34) and

(6.56) together with (8.91), with a = q, and (8.88), we can prove that

wεm
∈ L∞(0, T ;L2(ω)) ∩ Lq(0, T ;W1,q(ω)).

Then, owing to (9.132)–(9.138), we can apply directly [12, Theorem 3.9,
(i)–(iii)] to obtain:

Tm,j(wεm
) ∈ C0,1

ρm,j
(ωξ

T ), (10.144)

with the norm depending onN,ωξ
T , ‖wεm

‖L1(Em,j), ‖wεm
‖L1(ω̃T ), where ωξ

T ⊂⊂
ω̃T ⊂⊂ ωT ;

‖∇Tm,j(wεm
)‖L∞(ωξ

T ) ≤ C
(
λm,j + ρ−1

m,jδ
−N−3

ρm,j ,ωξ
T

‖wεm
‖L1(Em,j)

)
; (10.145)

‖Tm,j(wεm
)‖L∞(ωξ

T ) ≤ C
(
1 + ρ−1

m,jδ
−N−2

ρm,j ,ωξ
T

‖wεm
‖L1(Em,j)

)
; (10.146)

∥
∥(Tm,j(wεm

))′ · (Tm,j(wεm
) − (wεm

))
∥
∥
L1(ωξ

T ∩Em,j)

≤ Cρ−1
m,jLN+1(Em,j)

(
λm,j + ρ−1

m,jδ
−N−3

ρm,j ,ωξ
T

‖wεm
‖L1(Em,j)

)2

. (10.147)

In (10.145)–(10.147) the constants C are distinct and depend only on N, and

δρm,j ,ωξ
T

:= dρm,j
(ωξ

T , ωT ) > 0 due to (10.143). (10.148)

Moreover, according to [12, Lemma 3.5] (see also [22, Section VI.3]),

‖Tm,j(wεm
)‖Ls(ωT ) ≤ C‖wεm

‖Ls(ωT ) ∀ s : 1 ≤ s ≤ ∞, (10.149)

where C depends only on N.

11. Convergence of the approximative extra stress tensor

Proceeding as for (8.105), observing that now the functions are zero outside
ωT and using the notations (9.135) and (9.106)–(9.109), we obtain

w′
εm

= −divQ1,2
εm

− qεm
in D′(ωT ) (11.150)

Here the distributive time derivative w′
εm

is such that

w′
εm

∈ Lr0(0, T ;W−1,r0(ω)) + Lσ′
(ωT ), (11.151)

where r0 is defined by (8.83). In fact, due to (4.42), (5.55), (8.102) and (8.103)
on one hand, and due to (4.46) and (8.104) on the other, we can prove that

Q1,2
εm

∈ Lr0(ωT ) and qεm
∈ Lσ′

(ωT ). (11.152)
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As a consequence of (11.152)1,divQ1,2
εm

∈ Lr0(0, T ;W−1,r0(ω)). Now, observ-
ing that, by virtue of (10.144)–(10.146) and of the definition of ξ, our admis-
sible test function, defined in (10.142), φm,j ∈ Lr′

0(0, T ;W1,r′
0

0 (ω)) ∩ Lσ(ωT ).
Then, from (11.150) and (11.151), we infer that
∫ T

0

〈w′
εm

(t), φm,j(t)〉 dt =
∫

ωT

Q1,2
εm

: ∇φm,j dxdt−
∫

ωT

qεm
· φm,j dxdt.

(11.153)

On the other hand, owing to (9.132)–(9.138) and, in addition, to (11.152)–
(11.153), we can apply [12, Theorem 3.9, (iv)] to prove that for every ξ ∈
C∞

0 (ωT )
∫ T

0

〈w′
εm

(t), φm,j(t)〉 dt

=
1
2

∫

ωT

(
|Tm,j(wεm

)|2 − 2wεm
· Tm,j(wεm

)
)
ξ′ dxdt

+
∫

Em,j

(Tm,j(wεm
))′ · (Tm,j(wεm

) − wεm
) ξ dxdt. (11.154)

Note that the proof of (11.154) is done in [12, p. 23] for qεm
≡ 0 in (11.153).

But taking into account (11.151), the proof of [12, Theorem 3.9, (iv)] can be
repeated almost word by word in our case.

Now, gathering (11.153) and (11.154), and expanding the notations
(9.135) and (9.106)–(9.109), we obtain

∫

ωT

(
|∇uεm

|q−2∇uεm
− S

)
: ∇(Tm,j(wεm

)) ξ dxdt

= +
∫

ωT

(
S − |∇uεm

|q−2∇uεm

)
: Tm,j(wεm

) ⊗ ∇ξ dxdt

+
∫

ωT

(uεm
⊗ uεm

Φεm
(|uεm

|) − u ⊗ u) : ∇ (Tm,j(wεm
) ξ) dxdt

+α
∫

ωT

(
|u|σ−2u − |uεm

|σ−2uεm

)
· Tm,j(wεm

) ξ dxdt

+
∫

ωT

p1
εm

Tm,j(wεm
) · ∇ξ dxdt

+
∫

ωT

p1
εm

div(Tm,j(wεm
)) ξ dxdt

+
∫

ωT

p2
εm

div(Tm,j(wεm
) ξ) dxdt

−
∫

ωT

∇p3
εm

· Tm,j(wεm
) ξ dxdt

+
1
2

∫

ωT

(
2wεm

· Tm,j(wεm
) − |Tm,j(wεm

)|2
)
ξ′ dxdt



818 H. B. de Oliveira NoDEA

+
∫

Em,j

T ′
m,j(wεm

) · (wεm
− Tm,j(wεm

)) ξ dxdt

:= J1 + J2 + J3 + J4 + J5 + J6 + J7 + J8 + J9. (11.155)

We claim that, for a fixed j,

lim sup
m→∞

∣
∣
∣
∣

∫

ωT

(
|∇uεm

|q−2∇uεm
− S

)
: ∇(Tm,j(wεm

)) ξ dxdt
∣
∣
∣
∣≤C2− j

q . (11.156)

To prove this, we will carry out the passage to the limit m → ∞ in all absolute
values |Ji|, i = 1, . . . , 9.

• lim supm→∞(|J1|+|J4|)=0. Due to (4.42) and (8.102), S−|∇uεm
|q−2∇uεm

and p1
εm

are uniformly bounded in Lq′
(ωT ). Then, using Hölder’s inequal-

ity and (10.149) together with (9.106), led us to

|J1| + |J4| ≤ C1 ‖Tm,j(wεm
)‖Lq(ωT )

≤ C2

(
‖uεm

− u‖Lq(ωT ) + ‖∇(p̃h
εm

− p̃h)‖Lq(ωT )

)
.

The assertion follows by the application of (5.54) with s = γ = q and
(8.91) with a = q, and observing that always q < q∗ for any q ≥ 1.

• lim supm→∞(|J2| + |J6|) = 0. In fact, by Hölder’s inequality,

|J2| + |J6| ≤ ‖uεm
⊗ uεm

Φεm
(|uεm

|)
−u ⊗ u‖L1(ωT )‖∇ (Tm,j(wεm

) ξ) ‖L∞(ωξ
T )

+‖p2
εm

‖L1(ωT )‖div (Tm,j(wεm
) ξ) ‖L∞(ωξ

T ).

Then, using Hölder’s inequality again and due to (5.55) and (8.103), we
get lim supm→∞(|J2| + |J6|) = 0 if both second multiplying terms on the
right-hand side of the above inequality are finite. Indeed, by the applica-
tion of (10.145) and (10.146) together with (9.106), we get

‖∇ (Tm,j(wεm
) ξ) ‖L∞(ωξ

T )

≤ ‖∇Tm,j(wεm
)‖L∞(ωξ

T ) + C‖Tm,j(wεm
)‖L∞(ωξ

T )

≤ C1

⎛

⎝λm,j +
‖vεm

− v‖L1(Em,j)

ρm,jδ
N+3

ρm,j ,ωξ
T

⎞

⎠+ C2

⎛

⎝1 +
‖vεm

− v‖L1(Em,j)

ρm,jδ
N+2

ρm,j ,ωξ
T

⎞

⎠ .

From (4.40) and (8.91), the last with a = q,vεm
−v is uniformly bounded

in L1(Em,j). On the other hand, for a fixed j ∈ N, the sequence λm,j lies

in the interval
[
22j

, 22j+1
)

and, as a consequence, the sequence ρm,j =

λ2−q
m,j is uniformly bounded from above, which, in turn, by (10.148) and

(10.140), implies

inf
m∈N

δρm,j ,ωξ
T
> 0.

Analogously, we prove that also ‖div (Tm,j(wεm
) ξ) ‖L∞(ωξ

T ) is finite.
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• lim supm→∞(|J3| + |J7|) = 0. By Hölder’s inequality and (8.104)

|J3| + |J7| ≤
(
α‖|uεm

|σ−2uεm
− |u|σ−2u‖L1(ωT )

+‖∇p3
εm

‖L1(ωT )

)
‖Tm,j(wεm

)‖L∞(ωξ
T )

≤ C‖|uεm
|σ−2uεm

− |u|σ−2u‖Lσ′ (ωT )‖Tm,j(wεm
)‖L∞(ωξ

T ).

Arguing as we did in the previous case, we can show that, for each j ∈
N, Tm,j(wεm

) is uniformly bounded in L∞(ωξ
T ). Then, by the application

of (4.46), it follows that lim supm→∞(|J3| + |J7|) = 0.
• lim supm→∞(|J5|+ |J9|) ≤ C2− j

q . By the definition of the Lipschitz trun-
cation (see (10.141)) together with the fact that divwεm

= 0 (see (9.106)),
we can write

J5 =
∫

ωξ
T ∩Em,j

p1
εm

divTm,j(wεm
) dxdt.

Next we use Hölder’s inequality, (4.42) and (8.102) together with (10.145).
Then, arguing as in the cases for |J1| + |J4| and |J2| + |J6|, we have

lim sup
m→∞

|J5| ≤ C1 lim sup
m→∞

‖∇Tm,j(wεm
)‖Lq(ωξ

T ∩Em,j)

≤ C1 lim sup
m→∞

LN+1(Em,j)
1
q ‖∇Tm,j(wεm

)‖L∞(ωξ
T )

≤ C2 lim sup
m→∞

⎡

⎣LN+1(Em,j)
1
q

⎛

⎝λm,j +
‖vεm

− v‖L1(Em,j)

ρm,jδ
N+3

ρm,j ,ωξ
T

⎞

⎠

⎤

⎦

≤ C2 lim sup
m→∞

(
LN+1(Em,j)

1
q λm,j

)
.

Next, due to (9.137), we get lim supm→∞ |J5| ≤ C2− j
q .

For J9, we have by using (10.147) together with the definition of ρm,j (see
(9.134)) and arguing as we did above for |J5|,

lim sup
m→∞

|J9| ≤ C lim sup
m→∞

⎡

⎢
⎣λq−2

m,j LN+1(Em,j)

⎛

⎝λm,j +
‖vεm

− v‖L1(Em,j)

ρm,jδ
N+3

ρm,j ,ωξ
T

⎞

⎠

2
⎤

⎥
⎦

≤ C lim sup
m→∞

(
λq−1

m,j LN+1(Em,j)
)

≤ C2−j .

Then observing that q > 1, it follows that lim supm→∞ |J9| ≤ C2− j
q . Through-

out the above bullets, we have proven the claim (11.156) is true. On the other
hand, arguing as we did for |J5|, we can prove also that, for a fixed j,

lim sup
m→∞

∣
∣
∣
∣
∣

∫

Em,j

(
|∇uεm

|q−2∇uεm
− S

)
: ∇Tm,j(wεm

) ξ dxdt

∣
∣
∣
∣
∣
≤ C2− j

q . (11.157)
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In consequence, from the definition of Tm,j (see (10.141)), (11.156) and
(11.157), we prove that

lim sup
m→∞

∣
∣
∣
∣
∣

∫

ωT \Em,j

(
|∇uεm

|q−2∇uεm
− S

)
: ∇wεm

ξ dxdt

∣
∣
∣
∣
∣
≤ C2− j

q . (11.158)

Using the definition of wεm
(see (9.106)) and the strong convergence property

of p̃h
εm

(see (8.91)), it can be derived from (11.158) that

lim sup
m→∞

∣
∣
∣
∣
∣

∫

ωT \Em,j

(
|∇uεm

|q−2∇uεm
− S

)
: ∇(uεm

− u) ξ dxdt

∣
∣
∣
∣
∣
≤ C2− j

q .

(11.159)

Now, by (11.159) and (9.132), for each j ∈ N we can find a number mj ∈ N

such that
∣
∣
∣
∣
∣

∫

ωT \Emj,j

(
|∇uεmj

|q−2∇uεmj
− S

)
: ∇(uεmj

− u) ξ dxdt

∣
∣
∣
∣
∣
≤ C2− j

q ,

(11.160)

LN+1(Fmj ,j) ≤ C2−j , (11.161)

LN+1(Hmj ,j) ≤ C2−j , (11.162)

LN+1(Imj ,j) ≤ C2−j . (11.163)

Setting ξj := ξχωT \Emj,j
, where χωT \Emj,j

denotes the characteristic function
of the set ωT \ Emj ,j , it can be proved (cf. [12, pp. 36–37]), using (9.129),
(11.161)–(11.163) and the fact that λmj ,j ≥ 1, that

ξj → ξ a.e. in ωT as j → ∞. (11.164)

From (11.164), (4.40) and (4.42), we have, by appealing to Lebesgue’s theorem
of dominated convergence, that

∇u ξj → ∇u ξ strongly in Lq(ωT ), as j → ∞, (11.165)

S ξj → S ξ strongly in Lq′
(ωT ), as j → ∞. (11.166)

Then, from (11.160) and (11.165)–(11.166), and appealing once more to (4.40),
(4.42) and Lebesgue’s theorem of dominated convergence, we obtain

lim
j→∞

∫

ωT

|∇uεmj
|q ξj dxdt =

∫

ωT

S : ∇u ξ dxdt. (11.167)

Finally, taking into account (4.40), (4.42), (11.164) and (11.167), we can apply
the local Minty trick (cf. [24, Lemma A.2]) to establish that S ξ = |∇u|q−2∇u ξ
a.e. in ωT . Due to the arbitrariness of ξ,S = |∇u|q−2∇u a.e. in ωT and the
proof of Theorem 2.1 is concluded. �
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12. Remarks

In Theorem 2.1 we have proved the existence of weak solutions, in the sense
of Definition 2.1, to the problem (1.1)–(1.4) for any

q >
2N
N + 2

and σ > 1.

It is left open only the case of 1 < q ≤ 2N
N+2 for N ≥ 3. But, in this case and

with the methods at our present disposal, it seems to be very difficult to prove
a similar existence result, such as for the generalized Navier–Stokes problem
((1.1)–(1.4) with α = 0). The main reason, is because the compact imbedding
W1,q(Ω) ↪→↪→ L2(Ω), which holds only for q > 2N

N+2 , is fundamental in many
steps of our proof.

The result established in Theorem 2.1 is still valid, if we consider a diffu-
sion term with a q-structure satisfying to general growth and coercivity con-
ditions. Indeed, the proof still holds, with minor changes, if we assume the
tensor |∇u|q−2∇u of the diffusion term in (1.2) is replaced by a general tensor
T ≡ T(x, t,D) (D is the symmetric part of ∇u) satisfying to:

• |T(x, t,A)| ≤ C1|A|q−1 + f1 for all A in MN
sym, for a.a. (x, t) in QT and

for any function f1 in Lq′
(QT ) with f1 ≥ 0;

• T(x, t,A) : A ≥ C2|A|q − f2 for all A in MN
sym, for a.a. (x, t) in QT and

for any function f2 in L1(QT ) with f2 ≥ 0;
where C1 and C2 denote positive constants and MN

sym is the vector space of all
symmetric N ×N matrices, which is equipped with the scalar product A : B
and norm |A| =

√
A : A. It is also possible to consider a general damping

term with a σ-structure, satisfying to analogous general growth and coercivity
conditions, that Theorem 2.1 holds as well. In fact, instead of |u|σ−2u, we may
also have considered a general damping vector field q ≡ q(x, t,u) satisfying
to:

• |q(x, t,u)| ≤ C1|u|σ−1 + g1 for all u in RN , for a.a. (x, t) in QT and for
any function g1 in Lσ′

(QT ) with g1 ≥ 0;
• q(x, t,u) · u ≥ C2|u|σ − g2 for all u in RN , for a.a. (x, t) in QT and for

any function g2 in L1(QT ) with g2 ≥ 0;
where C1 and C2 denote positive constants.

It is possible to consider unbounded domains with no restriction on the
size and shape of Ω. In this case, proceeding as in [24, Section 3], we can prove
the regularized problem (3.14)–(3.17) has a unique weak solution for such Ω.
As a consequence, the original problem has a solution for these domains as
well.

The uniqueness of weak solutions is, as is well known, an open problem
for the generalized Navier–Stokes problem (without damping) for values of
q ≤ 2. By adapting [17, Théoréme 2.5.2], we can prove the weak solution to
the problem (1.1)–(1.4) is unique under more restrictive conditions that we
have needed to prove the existence. In fact, assuming that q ≥ N+2

N , replac-
ing the diffusion term div

(
|∇u|q−2∇u

)
in (1.2) by div

(
|∇u|q−2∇u

)
+ �u

and having in mind the damping term satisfies to (2.5), it is possible to prove
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the uniqueness of weak solution to this modified problem (1.1)–(1.4) (see [18,
Theorem 2]).

A completely different issue, is the important question about the qualita-
tive properties of the weak solutions to the problem (1.1)–(1.4). In this scope
we are mainly interested in the extinction in a finite time, once that the confine-
ment of the weak solutions in a space domain is a much more delicate matter
and remains an open problem, with the exceptions of the stationary Stokes
and Navier–Stokes problems (cf. [1–4,18]). Proceeding as in [18, Theorem 3],
letting u be a weak solution to the problem (1.1)–(1.4) in the sense of Defini-
tion 2.1 and assuming that (2.10) and one of the following conditions hold:
(1) q < 2; or
(2) 1 < σ < 2;
then we can prove the following assertions are true for each i = 1, 2, with
minor changes in the proofs:

• If f = 0 a.e. in QT , then there exists t∗(i) > 0 such that u(x, t) = 0 a.e.
in Ω and for all t ≥ t∗(i);

• Let f �= 0 and assume that exist positive constants ε(1), ε(2) and (positive)
times tf(1), t

f
(2) such that for almost all t ∈ [0, T ]:

‖f(t)‖Lq′ (Ω) ≤ ε(1)

(

1 − t

tf(1)

)θ(1)

+

if
Nq

N − q
≤ q < 2,

θ(1) =
q − 1
2 − q

;

or

‖f(t)‖Lq′ (Ω) ≤ ε(2)

(

1 − t

tf(2)

)θ(2)

+

if 1 < σ < 2,

θ(2) =
(q − 1)[q(N + σ) −Nσ]

q2(2 − σ)
.

Then, for each i = 1, 2, there exists a positive constant ε0(i) such that
u = 0 a.e. in Ω and for all t ≥ tf(i), provided 0 < ε(i) ≤ ε0(i).

Note that the subscripts (i) are used above in the sense to relate each result
to the different condition (i) written before.
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