80 research outputs found

    The Irreducible Spine(s) of Undirected Networks

    Full text link
    Using closure concepts, we show that within every undirected network, or graph, there is a unique irreducible subgraph which we call its "spine". The chordless cycles which comprise this irreducible core effectively characterize the connectivity structure of the network as a whole. In particular, it is shown that the center of the network, whether defined by distance or betweenness centrality, is effectively contained in this spine. By counting the number of cycles of length 3 <= k <= max_length, we can also create a kind of signature that can be used to identify the network. Performance is analyzed, and the concepts we develop are illurstrated by means of a relatively small running sample network of about 400 nodes.Comment: Submitted to WISE 201

    The visual sociogram in qualitative and mixed-methods research

    Get PDF
    The paper investigates the place of visual tools in mixed-methods research on social networks, arguing that they can not only improve the communicability of results, but also support research at the data gathering and analysis stages. Three examples from the authors’ own research experience illustrate how sociograms can be integrated in multiple ways with other analytical tools, both quantitative and qualitative, positioning visualization at the intersection of varied methods and channelling substantive ideas as well as network insight in a coherent way. Visualization also facilitates the participation of a broad range of stakeholders, including among others, study participants and non-specialist researchers. It can support the capacity of qualitative and mixed-methods research to reach out to areas of the social that are difficult to circumscribe, such as hidden populations and informal organisations. On this basis, visualization appears as a unique opportunity for mixing methods in the study of social networks, emphasizing both structure and process at the same time

    Novel Collective Effects in Integrated Photonics

    Full text link
    Superradiance, the enhanced collective emission of energy from a coherent ensemble of quantum systems, has been typically studied in atomic ensembles. In this work we study theoretically the enhanced emission of energy from coherent ensembles of harmonic oscillators. We show that it should be possible to observe harmonic oscillator superradiance for the first time in waveguide arrays in integrated photonics. Furthermore, we describe how pairwise correlations within the ensemble can be measured with this architecture. These pairwise correlations are an integral part of the phenomenon of superradiance and have never been observed in experiments to date.Comment: 7 pages, 3 figure

    Study of heterogeneous nucleation of eutectic Si in high-purity Al-Si alloys with Sr addition

    Get PDF
    The official published version can be accessed from the link below - Copyright @ 2010 The Minerals, Metals & Materials Society and ASM InternationalAl-5 wt pct Si master-alloys with controlled Sr and/or P addition/s were produced using super purity Al 99.99 wt pct and Si 99.999 wt pct materials in an arc melter. The master-alloy was melt-spun resulting in the production of thin ribbons. The Al matrix of the ribbons contained entrained Al-Si eutectic droplets that were subsequently investigated. Differential scanning calorimetry, thermodynamic calculations, and transmission electron microscopy techniques were employed to examine the effect of the Sr and P additions on eutectic undercoolings and nucleation phenomenon. Results indicate that, unlike P, Sr does not promote nucleation. Increasing Sr additions depressed the eutectic nucleation temperature. This may be a result of the formation of a Sr phase that could consume or detrimentally affect potent AlP nucleation sites.This work is financially supported by the Higher Education Commission of Pakistan and managerially supported from the OAD

    Diffusion of electrons in random magnetic fields,

    Full text link
    Diffusion of electrons in a two-dimensional system in static random magnetic fields is studied by solving the time-dependent Schr\"{o}dinger equation numerically. The asymptotic behaviors of the second moment of the wave packets and the temporal auto-correlation function in such systems are investigated. It is shown that, in the region away from the band edge, the growth of the variance of the wave packets turns out to be diffusive, whereas the exponents for the power-law decay of the temporal auto- correlation function suggest a kind of fractal structure in the energy spectrum and in the wave functions. The present results are consistent with the interpretation that the states away from the band edge region are critical.Comment: 22 pages (8 figures will be mailed if requested), LaTeX, to appear in Phys. Rev.

    Visual Network Analysis of Dynamic Metabolic Pathways

    Get PDF
    Abstract. We extend our previous work on the exploration of static metabolic networks to evolving, and therefore dynamic, pathways. We apply our visualization software to data from a simulation of early metabolism. Thereby, we show that our technique allows us to test and argue for or against different scenarios for the evolution of metabolic pathways. This supports a profound and efficient analysis of the structure and properties of the generated metabolic networks and its underlying components, while giving the user a vivid impression of the dynamics of the system. The analysis process is inspired by Ben Shneiderman’s mantra of information visualization. For the overview, user-defined diagrams give insight into topological changes of the graph as well as changes in the attribute set associated with the participating enzymes, substances and reactions. This way, “interesting features” in time as well as in space can be recognized. A linked view implementation enables the navigation into more detailed layers of perspective for in-depth analysis of individual network configuration

    Point-Contact Conductances at the Quantum Hall Transition

    Full text link
    On the basis of the Chalker-Coddington network model, a numerical and analytical study is made of the statistics of point-contact conductances for systems in the integer quantum Hall regime. In the Hall plateau region the point-contact conductances reflect strong localization of the electrons, while near the plateau transition they exhibit strong mesoscopic fluctuations. By mapping the network model on a supersymmetric vertex model with GL(2|2) symmetry, and postulating a two-point correlator in keeping with the rules of conformal field theory, we derive an explicit expression for the distribution of conductances at criticality. There is only one free parameter, the power law exponent of the typical conductance. Its value is computed numerically to be X_t = 0.640 +/- 0.009. The predicted conductance distribution agrees well with the numerical data. For large distances between the two contacts, the distribution can be described by a multifractal spectrum solely determined by X_t. Our results demonstrate that multifractality can show up in appropriate transport experiments.Comment: 18 pages, 15 figures included, revised versio

    Effect of age, sex and gender on pain sensitivity: A narrative review

    Get PDF
    © 2017 Eltumi And Tashani. Introduction: An increasing body of literature on sex and gender differences in pain sensitivity has been accumulated in recent years. There is also evidence from epidemiological research that painful conditions are more prevalent in older people. The aim of this narrative review is to critically appraise the relevant literature investigating the presence of age and sex differences in clinical and experimental pain conditions. Methods: A scoping search of the literature identifying relevant peer reviewed articles was conducted on May 2016. Information and evidence from the key articles were narratively described and data was quantitatively synthesised to identify gaps of knowledge in the research literature concerning age and sex differences in pain responses. Results: This critical appraisal of the literature suggests that the results of the experimental and clinical studies regarding age and sex differences in pain contain some contradictions as far as age differences in pain are concerned. While data from the clinical studies are more consistent and seem to point towards the fact that chronic pain prevalence increases in the elderly findings from the experimental studies on the other hand were inconsistent, with pain threshold increasing with age in some studies and decreasing with age in others. Conclusion: There is a need for further research using the latest advanced quantitative sensory testing protocols to measure the function of small nerve fibres that are involved in nociception and pain sensitivity across the human life span. Implications: Findings from these studies should feed into and inform evidence emerging from other types of studies (e.g. brain imaging technique and psychometrics) suggesting that pain in the older humans may have unique characteristics that affect how old patients respond to intervention
    corecore