32 research outputs found

    The instability of a liquid layer heated from the side when the upper surface is open to air

    Get PDF
    When a liquid layer is heated from the side, a monocellular flow develops immediately, no matter how small the temperature difference is. If the temperature gradient between the side walls is increased, this flow becomes unstable. Laser Doppler velocimetry measurements are reported here in an attempt to describe the main features of both the basic flow and the instability modes. It is found that before the appearance of traveling waves ~the most dangerous mode as predicted by the theory!, stable rolls with their axes perpendicular to the temperature gradient, span over the whole liquid layer, starting from the hot side, even if the aspect ratio ~the length of the layer divided by its thickness! is very high. This unexpected situation modifies the basic flow. A further increase of the temperature gradient leads to the appearance of a time periodic motion. © 1996 American Institute of Physics

    Amplitude equations for Rayleigh-Benard convective rolls far from threshold

    Full text link
    An extension of the amplitude method is proposed. An iterative algorithm is developed to build an amplitude equation model that is shown to provide precise quantitative results even far from the linear instability threshold. The method is applied to the study of stationary Rayleigh-Benard thermoconvective rolls in the nonlinear regime. In particular, the generation of second and third spatial harmonics is analyzed. Comparison with experimental results and direct numerical calculations is also made and a very good agreement is found.Peer reviewe

    Why are flare ribbons associated with the spines of magnetic null points generically elongated?

    Get PDF
    Coronal magnetic null points exist in abundance as demonstrated by extrapolations of the coronal field, and have been inferred to be important for a broad range of energetic events. These null points and their associated separatrix and spine field lines represent discontinuities of the field line mapping, making them preferential locations for reconnection. This field line mapping also exhibits strong gradients adjacent to the separatrix (fan) and spine field lines, that can be analysed using the `squashing factor', QQ. In this paper we make a detailed analysis of the distribution of QQ in the presence of magnetic nulls. While QQ is formally infinite on both the spine and fan of the null, the decay of QQ away from these structures is shown in general to depend strongly on the null-point structure. For the generic case of a non-radially-symmetric null, QQ decays most slowly away from the spine/fan in the direction in which B|{\bf B}| increases most slowly. In particular, this demonstrates that the extended, elliptical high-QQ halo around the spine footpoints observed by Masson et al. (Astrophys. J., 700, 559, 2009) is a generic feature. This extension of the QQ halos around the spine/fan footpoints is important for diagnosing the regions of the photosphere that are magnetically connected to any current layer that forms at the null. In light of this, we discuss how our results can be used to interpret the geometry of observed flare ribbons in `circular ribbon flares', in which typically a coronal null is implicated. We conclude that both the physics in the vicinity of the null and how this is related to the extension of QQ away from the spine/fan can be used in tandem to understand observational signatures of reconnection at coronal null points.Comment: Pre-print version of article accepted for publication in Solar Physic

    The instability of a liquid layer heated from the side when the upper surface is open to air

    No full text
    When a liquid layer is heated from the side, a monocellular flow develops immediately, no matter how small the temperature difference is. If the temperature gradient between the side walls is increased, this flow becomes unstable. Laser Doppler velocimetry measurements are reported here in an attempt to describe the main features of both the basic flow and the instability modes. It is found that before the appearance of traveling waves ~the most dangerous mode as predicted by the theory!, stable rolls with their axes perpendicular to the temperature gradient, span over the whole liquid layer, starting from the hot side, even if the aspect ratio ~the length of the layer divided by its thickness! is very high. This unexpected situation modifies the basic flow. A further increase of the temperature gradient leads to the appearance of a time periodic motion. © 1996 American Institute of Physics
    corecore