622 research outputs found

    Towards a sensitive search for variation of the fine structure constant using radio-frequency E1 transitions in atomic dysprosium

    Full text link
    It has been proposed that the radio-frequency electric-dipole (E1) transition between two nearly degenerate opposite-parity states in atomic dysprosium should be highly sensitive to possible temporal variation of the fine structure constant (α\alpha) [V. A. Dzuba, V. V. Flambaum, and J. K. Webb, Phys. Rev. A {\bf 59}, 230 (1999)]. We analyze here an experimental realization of the proposed search in progress in our laboratory, which involves monitoring the E1 transition frequency over a period of time using direct frequency counting techniques. We estimate that a statistical sensitivity of |\adota| \sim 10^{-18}/yr may be achieved and discuss possible systematic effects that may limit such a measurement.Comment: 8 pages, 7 figure

    Quasiparticle RPA with finite rank approximation for Skyrme interactions

    Full text link
    A finite rank separable approximation for the particle-hole RPA calculations with Skyrme interactions is extended to take into account the pairing. As an illustration of the method energies and transition probabilities for the quadrupole and octupole excitations in some O, Ar, Sn and Pb isotopes are calculated. The values obtained within our approach are very close to those that were calculated within QRPA with the full Skyrme interaction. They are in reasonable agreement with experimental data.Comment: 20 pages, 1 figure, submitted to Phys.Rev.

    Use of Organic Fertilizers to Enhance Soil Fertility, Plant Growth, and Yield in a Tropical Environment

    Get PDF
    Soils rarely have sufficient nutrient for crops to reach their potential yield. Applying organic fertilizers without prior knowledge of their properties may cause yield decline under low application or pollute the environment with excessive application. Understanding the nutrient variability and release pattern of organic fertilizers is crucial to supply plants with sufficient nutrients to achieve optimum productivity, while also rebuilding soil fertility and ensuring protection of environmental and natural resources. This chapter presents the authors’ experiences with different organic amendments under Hawaii\u27s tropical conditions, rather than an intensive literature review. For meat and bone meal by‐products (tankage), batch‐to‐batch variability, nutrient content/release pattern and quality, and plant growth response to the liquid fertilizer produced from tankage were evaluated. For animal livestock, dairy manure (DM) and chicken manure (CM) quality, changes in soil properties, and crop biomass production and root distributions were evaluated. For seaweed, an established bio‐security protocol, nutrient, especially potassium (K) variability, and plant growth and yield response were evaluated in different tropical soils

    A Monolayer of Primary Colonic Epithelium Generated on a Scaffold with a Gradient of Stiffness for Drug Transport Studies

    Get PDF
    Animal models are frequently used for in vitro physiologic and drug transport studies of the colon, but there exists significant pressure to improve assay throughput as well as to achieve tighter control of experimental variables than can be achieved with animals. Thus, development of a primary in vitro colonic epithelium cultured as high resistance with transport protein expression and functional behavior similar to that of a native colonic would be of enormous value for pharmaceutical research. A collagen scaffold, in which the degree of collagen cross-linking was present as a gradient, was developed to support the proliferation of primary colonic cells. The gradient of cross-linking created a gradient in stiffness across the scaffold, enabling the scaffold to resist deformation by cells. mRNA expression and quantitative proteomic mass spectrometry of cells growing on these surfaces as a monolayer suggested that the transporters present were similar to those in vivo. Confluent monolayers acted as a barrier to small molecules so that drug transport studies were readily performed. Transport function was evaluated using atenolol (a substrate for passive paracellular transport), propranolol (a substrate for passive transcellular transport), rhodamine 123 (Rh123, a substrate for P-glycoprotein), and riboflavin (a substrate for solute carrier transporters). Atenolol was poorly transported with an apparent permeability (Papp) of < 5 × 10-7 cm s-1, while propranolol demonstrated a Papp of 9.69 × 10-6 cm s-1. Rh123 was transported in a luminal direction (Papp,efflux/Papp,influx = 7) and was blocked by verapamil, a known inhibitor of P-glycoprotein. Riboflavin was transported in a basal direction, and saturation of the transporter was observed at high riboflavin concentrations as occurs in vivo. It is anticipated that this platform of primary colonic epithelium will find utility in drug development and physiological studies, since the tissue possesses high integrity and active transporters and metabolism similar to that in vivo

    Hepatic Steatosis After Neoadjuvant Chemotherapy for Pancreatic Cancer: Incidence and Implications for Outcomes After Pancreatoduodenectomy

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or be any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemicBackground This study aimed to determine the incidence of new onset hepatic steatosis after neoadjuvant chemotherapy for pancreatic cancer and its impact on outcomes after pancreatoduodenectomy. Methods Retrospective review identified patients who received neoadjuvant chemotherapy for pancreatic adenocarcinoma and underwent pancreatoduodenectomy from 2013 to 2018. Preoperative computed tomography scans were evaluated for the development of hepatic steatosis after neoadjuvant chemotherapy. Hypoattenuation included liver attenuation greater than or equal to 10 Hounsfield units less than tissue density of spleen on noncontrast computed tomography and greater than or equal to 20 Hounsfield units less on contrast-enhanced computed tomography. Results One hundred forty-nine patients received neoadjuvant chemotherapy for a median of 5 cycles (interquartile range (IQR), 4–6). FOLFIRINOX was the regimen in 78% of patients. Hepatic steatosis developed in 36 (24%) patients. The median time from neoadjuvant chemotherapy completion to pancreatoduodenectomy was 40 days (IQR, 29–51). Preoperative biliary stenting was performed in 126 (86%) patients. Neoadjuvant radiotherapy was delivered to 23 (15%) patients. Female gender, obesity, and prolonged exposure to chemotherapy were identified as risk factors for chemotherapy-associated hepatic steatosis. Compared with control patients without neoadjuvant chemotherapy-associated hepatic steatosis, patients developing steatosis had similar rates of postoperative pancreatic fistula (8% (control) vs. 4%, p = 0.3), delayed gastric emptying (8% vs. 14%, p = 0.4), and major morbidity (11% vs. 15%, p = 0.6). Ninety-day mortality was similar between groups (8% vs. 2%, p = 0.08). Conclusion Hepatic steatosis developed in 24% of patients who received neoadjuvant chemotherapy but was not associated with increased morbidity or mortality after pancreatoduodenectomy

    Stress corrosion cracking in Al-Zn-Mg-Cu aluminum alloys in saline environments

    Get PDF
    Copyright 2013 ASM International. This paper was published in Metallurgical and Materials Transactions A, 44A(3), 1230 - 1253, and is made available as an electronic reprint with the permission of ASM International. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or modification of the content of this paper are prohibited.Stress corrosion cracking of Al-Zn-Mg-Cu (AA7xxx) aluminum alloys exposed to saline environments at temperatures ranging from 293 K to 353 K (20 °C to 80 °C) has been reviewed with particular attention to the influences of alloy composition and temper, and bulk and local environmental conditions. Stress corrosion crack (SCC) growth rates at room temperature for peak- and over-aged tempers in saline environments are minimized for Al-Zn-Mg-Cu alloys containing less than ~8 wt pct Zn when Zn/Mg ratios are ranging from 2 to 3, excess magnesium levels are less than 1 wt pct, and copper content is either less than ~0.2 wt pct or ranging from 1.3 to 2 wt pct. A minimum chloride ion concentration of ~0.01 M is required for crack growth rates to exceed those in distilled water, which insures that the local solution pH in crack-tip regions can be maintained at less than 4. Crack growth rates in saline solution without other additions gradually increase with bulk chloride ion concentrations up to around 0.6 M NaCl, whereas in solutions with sufficiently low dichromate (or chromate), inhibitor additions are insensitive to the bulk chloride concentration and are typically at least double those observed without the additions. DCB specimens, fatigue pre-cracked in air before immersion in a saline environment, show an initial period with no detectible crack growth, followed by crack growth at the distilled water rate, and then transition to a higher crack growth rate typical of region 2 crack growth in the saline environment. Time spent in each stage depends on the type of pre-crack (“pop-in” vs fatigue), applied stress intensity factor, alloy chemistry, bulk environment, and, if applied, the external polarization. Apparent activation energies (E a) for SCC growth in Al-Zn-Mg-Cu alloys exposed to 0.6 M NaCl over the temperatures ranging from 293 K to 353 K (20 °C to 80 °C) for under-, peak-, and over-aged low-copper-containing alloys (~0.8 wt pct), they are typically ranging from 20 to 40 kJ/mol for under- and peak-aged alloys, and based on limited data, around 85 kJ/mol for over-aged tempers. This means that crack propagation in saline environments is most likely to occur by a hydrogen-related process for low-copper-containing Al-Zn-Mg-Cu alloys in under-, peak- and over-aged tempers, and for high-copper alloys in under- and peak-aged tempers. For over-aged high-copper-containing alloys, cracking is most probably under anodic dissolution control. Future stress corrosion studies should focus on understanding the factors that control crack initiation, and insuring that the next generation of higher performance Al-Zn-Mg-Cu alloys has similar longer crack initiation times and crack propagation rates to those of the incumbent alloys in an over-aged condition where crack rates are less than 1 mm/month at a high stress intensity factor

    Results of the BiPo-1 prototype for radiopurity measurements for the SuperNEMO double beta decay source foils

    Get PDF
    The development of BiPo detectors is dedicated to the measurement of extremely high radiopurity in 208^{208}Tl and 214^{214}Bi for the SuperNEMO double beta decay source foils. A modular prototype, called BiPo-1, with 0.8 m2m^2 of sensitive surface area, has been running in the Modane Underground Laboratory since February, 2008. The goal of BiPo-1 is to measure the different components of the background and in particular the surface radiopurity of the plastic scintillators that make up the detector. The first phase of data collection has been dedicated to the measurement of the radiopurity in 208^{208}Tl. After more than one year of background measurement, a surface activity of the scintillators of A\mathcal{A}(208^{208}Tl) == 1.5 μ\muBq/m2^2 is reported here. Given this level of background, a larger BiPo detector having 12 m2^2 of active surface area, is able to qualify the radiopurity of the SuperNEMO selenium double beta decay foils with the required sensitivity of A\mathcal{A}(208^{208}Tl) << 2 μ\muBq/kg (90% C.L.) with a six month measurement.Comment: 24 pages, submitted to N.I.M.

    Circulating syndecan-1 is reduced in pregnancies with poor fetal growth and its secretion regulated by matrix metalloproteinases and the mitochondria

    Get PDF
    Fetal growth restriction is a leading cause of stillbirth that often remains undetected during pregnancy. Identifying novel biomarkers may improve detection of pregnancies at risk. This study aimed to assess syndecan-1 as a biomarker for small for gestational age (SGA) or fetal growth restricted (FGR) pregnancies and determine its molecular regulation. Circulating maternal syndecan-1 was measured in several cohorts; a large prospective cohort collected around 36 weeks' gestation (n = 1206), a case control study from the Manchester Antenatal Vascular service (285 women sampled at 24-34 weeks' gestation); two prospective cohorts collected on the day of delivery (36 + 3-41 + 3 weeks' gestation, n = 562 and n = 405 respectively) and a cohort who delivered for preterm FGR (< 34 weeks). Circulating syndecan-1 was consistently reduced in women destined to deliver growth restricted infants and those delivering for preterm disease. Syndecan-1 secretion was reduced by hypoxia, and its loss impaired proliferation. Matrix metalloproteinases and mitochondrial electron transport chain inhibitors significantly reduced syndecan-1 secretion, an effect that was rescued by coadministration of succinate, a mitochondrial electron transport chain activator. In conclusion, circulating syndecan-1 is reduced among cases of term and preterm growth restriction and has potential for inclusion in multi-marker algorithms to improve detection of poorly grown fetuses
    corecore