1,303 research outputs found
B(d,s)-anti-B(d,s) mixing and Lepton Flavour Violation in SUSY GUTs: impact of the first measurements of phi(s)
In this work we re-examine the correlation between B(d,s)-anti-B(d,s) mixing
and Lepton Flavour Violation in the light of recent experimental measurements
in the system. We perform a generic SUSY analysis of the allowed down
squark mass insertion parameter space. In the SUSY GUT scenario this parameter
space is then used to make predictions for LFV branching ratios. We find that
the recent measurement for the CP phase excludes the lowest rates for
tau --> mu + gamma and provides a lower bound of ~ 3E-9 for tan beta = 10.
Future experimental improvements in the bound on tau --> mu + gamma and the
measurement of phi(s) will constitute a strong test of the SUSY GUT scenario.Comment: 8 pages, 7 jpeg figures using pdflatex. Version published in Nuclear
Physics
Bayesian approach to the assessment of the population-specific risk of inhibitors in hemophilia A patients : A case study
Background: Developing inhibitors is a rare event during the treatment of hemophilia A. The multifacets and uncertainty surrounding the development of inhibitors further complicate the process of estimating inhibitor rate from the limited data. Bayesian statistical modeling provides a useful tool in generating, enhancing, and exploring the evidence through incorporating all the available information. Methods: We built our Bayesian analysis using three study cases to estimate the inhibitor rates of patients with hemophilia A in three different scenarios: Case 1, a single cohort of previously treated patients (PTPs) or previously untreated patients; Case 2, a meta-analysis of PTP cohorts; and Case 3, a previously unexplored patient population - patients with baseline low-titer inhibitor or history of inhibitor development. The data used in this study were extracted from three published ADVATE (antihemophilic factor [recombinant] is a product of Baxter for treating hemophilia A) post-authorization surveillance studies. Noninformative and informative priors were applied to Bayesian standard (Case 1) or random-effects (Case 2 and Case 3) logistic models. Bayesian probabilities of satisfying three meaningful thresholds of the risk of developing a clinical significant inhibitor (10/100, 5/100 [high rates], and 1/86 [the Food and Drug Administration mandated cutoff rate in PTPs]) were calculated. The effect of discounting prior information or scaling up the study data was evaluated. Results: Results based on noninformative priors were similar to the classical approach. Using priors from PTPs lowered the point estimate and narrowed the 95% credible intervals (Case 1: from 1.3 [0.5, 2.7] to 0.8 [0.5, 1.1]; Case 2: from 1.9 [0.6, 6.0] to 0.8 [0.5, 1.1]; Case 3: 2.3 [0.5, 6.8] to 0.7 [0.5, 1.1]). All probabilities of satisfying a threshold of 1/86 were above 0.65. Increasing the number of patients by two and ten times substantially narrowed the credible intervals for the single cohort study (1.4 [0.7, 2.3] and 1.4 [1.1, 1.8], respectively). Increasing the number of studies by two and ten times for the multiple study scenarios (Case 2: 1.9 [0.6, 4.0] and 1.9 [1.5, 2.6]; Case 3: 2.4 [0.9, 5.0] and 2.6 [1.9, 3.5], respectively) had a similar effect. Conclusion: Bayesian approach as a robust, transparent, and reproducible analytic method can be efficiently used to estimate the inhibitor rate of hemophilia A in complex clinical settings
The Geminga Fraction
Radio-quiet gamma-ray pulsars like Geminga may account for a number of the unidentified EGRET sources in the Galaxy. The number of Geminga-like pulsars is very sensitive to the geometry of both the gamma-ray and radio beams. Recent studies of the shape and polarization of pulse profiles of young radio pulsars have provided evidence that their radio emission originates in wide cone beams at altitudes that are a significant fraction (1 -10%) of their light cylinder radius. Such wide radio emission beams will be visible at a much larger range of observer angles than the narrow core components thought to originate at lower altitude. Using 3D geometrical modeling that includes relativistic effects from pulsar rotation, we study the visibility of such radio cone beams as well as that of the gamma-ray beams predicted by slot gap and outer gap models. From the results of this study one can obtain revised predictions for the fraction of Geminga-like, radio quiet pulsars present in the gamma-ray pulsar population
CP violation in in the model III 2HDM
We have calculated the Wilson coefficients (i=1,2) in the
renormalization scheme in the model III 2HDM. Using the obtained
Wilson coefficients, we have analyzed the CP violation in decays (q=d,s) in the model. The CP asymmetry, , depends on the
parameters of models and in can be as large as 40% and
35% for and respectively. It can reach 4% for decays.
Because in SM CP violation is smaller than or equal to O() which is
unobservably small, an observation of CP asymmetry in the decays would unambiguously signal the existence of new physics.Comment: revtex4, 16 pages, 7 figure
Short time scale pulse stability of the Crab pulsar in the optical band
The fine structure and the variations of the optical pulse shape and phase of
the Crab pulsar are studied on various time scales. The observations have been
carried out on 4-m William Hershel and 6-m BTA telescopes with APD photon
counter, photomultiplier based 4-channel photometer and PSD based panoramic
spectrophotopolarimeter with 1s time resolution in 1994, 1999, 2003 and
2005-2006 years. The upper limit on the pulsar precession on Dec 2, 1999 is
placed in the 10 s - 2 hours time range. The evidence of a varying from set to
set fine structure of the main pulse is found in the 1999 and 2003 years data.
No such fine structure is detected in the integral pulse shape of 1994, 1999
and 2003 years.
The drastic change of the pulse shape in the 2005-2006 years set is detected
along with the pulse shape variability and quasi-periodic phase shifts.Comment: 4 pages, 6 figures. To appear in ApSS, in the proceedings of the
conference "Isolated Neutron Stars: from the Interior to the Surface",
London, April 2006; eds. D. Page, R. Turolla and S. Zan
The hyperon-nucleon interaction: conventional versus effective field theory approach
Hyperon-nucleon interactions are presented that are derived either in the
conventional meson-exchange picture or within leading order chiral effective
field theory. The chiral potential consists of one-pseudoscalar-meson exchanges
and non-derivative four-baryon contact terms. With regard to meson-exchange
hyperon-nucleon models we focus on the new potential of the Juelich group,
whose most salient feature is that the contributions in the scalar--isoscalar
(\sigma) and vector--isovector (\rho) exchange channels are constrained by a
microscopic model of correlated \pi\pi and KKbar exchange.Comment: 28 pages, 8 figures, submitted to Lecture Notes in Physic
Population statistics study of radio and gamma-ray pulsars in the Galactic plane
We present results of our pulsar population synthesis of ordinary isolated
and millisecond pulsars in the Galactic plane. Over the past several years, a
program has been developed to simulate pulsar birth, evolution and emission
using Monte Carlo techniques. We have added to the program the capability to
simulate millisecond pulsars, which are old, recycled pulsars with extremely
short periods. We model the spatial distribution of the simulated pulsars by
assuming that they start with a random kick velocity and then evolve through
the Galactic potential. We use a polar cap/slot gap model for -ray
emission from both millisecond and ordinary pulsars. From our studies of radio
pulsars that have clearly identifiable core and cone components, in which we
fit the polarization sweep as well as the pulse profiles in order to constrain
the viewing geometry, we develop a model describing the ratio of radio
core-to-cone peak fluxes. In this model, short period pulsars are more
cone-dominated than in our previous studies. We present the preliminary results
of our recent study and the implications for observing these pulsars with GLAST
and AGILE.Comment: 6 pages, 3 figures, 1 table, accepted in Astrophysics and Space
Scienc
Lepton Flavor Violating Process in Bi-maximal texture of Neutrino Mixings
We investigate the lepton flavor violation in the framework of the MSSM with
right-handed neutrinos taking the large mixing angle MSW solution in the
quasi-degenerate and the inverse-hierarchical neutrino masses. We predict the
branching ratio of and processes
assuming the degenerate right-handed Majorana neutrino masses. We find that the
branching ratio in the quasi-degenerate neutrino mass spectrum is 100 times
smaller than the ones in the inverse-hierarchical and the hierarchical neutrino
spectra. We emphasize that the magnitude of is one of important
ingredients to predict BR(). The effect of the deviation
from the complete-degenerate right-handed Majorana neutrino masses are also
estimated. Furtheremore, we examine the S_{3\sL}\times S_{3\sR} model, which
gives the quasi-degenerate neutrino masses, and the Shafi-Tavartkiladze model,
which gives the inverse-hierarchical neutrino masses. Both predicted branching
ratios of are smaller than the experimantal bound.Comment: Latex file, 38 pages, 10 figures, revised versio
N-body simulations of gravitational dynamics
We describe the astrophysical and numerical basis of N-body simulations, both
of collisional stellar systems (dense star clusters and galactic centres) and
collisionless stellar dynamics (galaxies and large-scale structure). We explain
and discuss the state-of-the-art algorithms used for these quite different
regimes, attempt to give a fair critique, and point out possible directions of
future improvement and development. We briefly touch upon the history of N-body
simulations and their most important results.Comment: invited review (28 pages), to appear in European Physics Journal Plu
Residue from vacuum ultraviolet irradiation of benzene ices: Insights into the physical structure of astrophysical dust
We have irradiated benzene ices deposited at 4 K on a cold, interstellar dust analog with vacuum ultraviolet (9 eV) irradiation for periods lasting from several hours to nearly a day, after which the irradiated ice was warmed to room temperature. Vacuum ultraviolet photoabsorption spectra of the aromatic residue left at room temperature were recorded and showed the synthesis of benzene derivatives. The residue was also imaged using an electron microscope and revealed crystals of various sizes and shapes. The result of our experiments suggests such geometrically shaped dust particles may be a key component of interstellar dust
- …