38 research outputs found
Fictitious Magnetic Resonance by Quasi-Electrostatic Field
We propose a new kind of spin manipulation method using a {\it fictitious}
magnetic field generated by a quasi-electrostatic field. The method can be
applicable to every atom with electron spins and has distinct advantages of
small photon scattering rate and local addressability. By using a
laser as a quasi-electrostatic field, we have experimentally demonstrated the
proposed method by observing the Rabi-oscillation of the ground state hyperfine
spin F=1 of the cold atoms and the Bose-Einstein condensate.Comment: 5 pages, 5 figure
The BCS-Bose Crossover Theory
We contrast {\it four} distinct versions of the BCS-Bose statistical
crossover theory according to the form assumed for the electron-number equation
that accompanies the BCS gap equation. The four versions correspond to
explicitly accounting for two-hole-(2h) as well as two-electron-(2e) Cooper
pairs (CPs), or both in equal proportions, or only either kind. This follows
from a recent generalization of the Bose-Einstein condensation (GBEC)
statistical theory that includes not boson-boson interactions but rather 2e-
and also (without loss of generality) 2h-CPs interacting with unpaired
electrons and holes in a single-band model that is easily converted into a
two-band model. The GBEC theory is essentially an extension of the
Friedberg-T.D. Lee 1989 BEC theory of superconductors that excludes 2h-CPs. It
can thus recover, when the numbers of 2h- and 2e-CPs in both BE-condensed and
noncondensed states are separately equal, the BCS gap equation for all
temperatures and couplings as well as the zero-temperature BCS
(rigorous-upper-bound) condensation energy for all couplings. But ignoring
either 2h- {\it or} 2e-CPs it can do neither. In particular, only {\it half}
the BCS condensation energy is obtained in the two crossover versions ignoring
either kind of CPs. We show how critical temperatures from the original
BCS-Bose crossover theory in 2D require unphysically large couplings for the
Cooper/BCS model interaction to differ significantly from the s of
ordinary BCS theory (where the number equation is substituted by the assumption
that the chemical potential equals the Fermi energy).Comment: thirteen pages including two figures. Physica C (in press, 2007
Theory of output coupling for trapped fermionic atoms
We develop a dynamic theory of output coupling, for fermionic atoms initially
confined in a magnetic trap. We consider an exactly soluble one-dimensional
model, with a spatially localized delta-type coupling between the atoms in the
trap and a continuum of free-particle external modes. Two important special
cases are considered for the confinement potential: the infinite box and the
harmonic oscillator. We establish that in both cases a bound state of the
coupled system appears for any value of the coupling constant, implying that
the trap population does not vanish in the infinite-time limit. For weak
coupling, the energy spectrum of the outgoing beam exhibits peaks corresponding
to the initially occupied energy levels in the trap; the height of these peaks
increases with the energy. As the coupling gets stronger, the energy spectrum
is displaced towards dressed energies of the fermions in the trap. The
corresponding dressed states result from the coupling between the unperturbed
fermionic states in the trap, mediated by the coupling between these states and
the continuum. In the strong-coupling limit, there is a reinforcement of the
lowest-energy dressed mode, which contributes to the energy spectrum of the
outgoing beam more strongly than the other modes. This effect is especially
pronounced for the one-dimensional box, which indicates that the efficiency of
the mode-reinforcement mechanism depends on the steepness of the confinement
potential. In this case, a quasi-monochromatic anti-bunched atomic beam is
obtained. Results for a bosonic sample are also shown for comparison.Comment: 16 pages, 7 figures, added discussion on time-dependent spectral
distribution and corresponding figur
Whole-genome sequencing reveals host factors underlying critical COVID-19
Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
Ferroplasma cupricumulans sp. nov., a novel moderately thermophilic, acidophilic archaeon isolated from an industrial-scale chalcocite bioleach heap
A new species of Archaea was isolated from an industrial mineral sulphide bioleach heap. Strain BH2, a non-motile pleomorphic coccus, was capable of chemomixotrophic growth on ferrous sulphate and yeast extract. Growth was not supported in the absence of yeast extract. Phylogenetic analysis based on the 16S rRNA gene showed that strain BH2 was most closely related to the species Ferroplasma acidiphilum; however, it showed only 95% sequence similarity with this species. Strain BH2 had a temperature optimum of 53.6°C and a temperature range for growth between 22 and 63°C. Thus, it is the first moderately thermophilic member of the genus Ferroplasma. The optimum pH for the growth of the strain occurred between pH 1.0 and 1.2 and the lowest pH at which growth was observed was 0.4. Based on 16S rRNA gene sequence analysis and other physiological characteristics, strain BH2 constitutes a new species within the genus Ferroplasma. The name Ferroplasma cupricumulans is proposed for the new species and strain BH2 (DSM 16651) is proposed as the type strain
Genetic diversity and symbiotic effectiveness of Phaseolus vulgaris -nodulating rhizobia in Kenya
Phaseolus vulgaris (common bean) was introduced to Kenya several centuries ago but the rhizobia that nodulate it in the country remain poorly characterised. To address this gap in knowledge, 178 isolates recovered from the root nodules of P. vulgaris cultivated in Kenya were genotyped stepwise by the analysis of genomic DNA fingerprints, PCR-RFLP and 16S rRNA, atpD, recA and nodC gene sequences. Results indicated that P. vulgaris in Kenya is nodulated by at least six Rhizobium genospecies, with most of the isolates belonging to R. phaseoli and a possibly novel Rhizobium species. Infrequently, isolates belonged to R. paranaense, R. leucaenae, R. sophoriradicis and R. aegyptiacum. Despite considerable core-gene heterogeneity among the isolates, only four nodC gene alleles were observed indicating conservation within this gene. Testing of the capacity of the isolates to fix nitrogen (N2) in symbiosis with P. vulgaris revealed wide variations in effectiveness, with ten isolates comparable to R. tropici CIAT 899, a commercial inoculant strain for P. vulgaris. In addition to unveiling effective native rhizobial strains with potential as inoculants in Kenya, this study demonstrated that Kenyan soils harbour diverse P. vulgaris-nodulating rhizobia, some of which formed phylogenetic clusters distinct from known lineages. The native rhizobia differed by site, suggesting that field inoculation of P. vulgaris may need to be locally optimised