1,625 research outputs found

    Determination of heavy metal contamination in the soil environment using ion-exchange membranes

    Get PDF
    Non-Peer ReviewedAn anion exchange resin membrane saturated with chelating agent (AEM-DTPA) was used to assess the bioavailability of four heavy metals, Cd, Cr Ni and Pb via direct in soil burial. Two soils with four contamination rates of each metal were tested using three crops: oats, radish and lettuce. The resin membrane was buried in saturated soil with de-ionized water for 60 min. and extractable metals from the soils were correlated with uptake by plants grown in the soils. The amounts of heavy metals extracted by AEM-DTPA were significantly correlated with plant uptake and with metal extracted by the conventional DTP A method. The critical levels of the four heavy metals varied from crop to crop, and soil to soil. It was demonstrated that AEM-DTPA direct in-soil burial is a suitable method in assessing relative heavy metal bioavailability in polluted soil environments. It is a simple and easy to use procedure which reduces soil handling

    Resource-based View in Information Systems Research: A Meta-Analysis

    Get PDF
    Resource-based view is the theory that has been applied to analyze the impact of informa-tion technology on business performance. Its main argument is that competitive advan-tages are determined by the unique valuable resources controlled by an organization. IT as a valuable asset will have positive effect on firm performance. However, previous re-search on the issue is inconsistent. This paper reports a meta analysis of 42 papers pub-lished in major journals in information systems. Our findings indicate that the capability mediated model is better than the direct effect model and the major impact of IT is on ef-ficiency indicators

    Neutron Transfer Dynamics and Doorway to Fusion in Time-Dependent Hartree-Fock Theory

    Full text link
    We analyze the details of mass exchange in the vicinity of the Coulomb barrier for heavy-ion collisions involving neutron-rich nuclei using the time-dependent Hartree-Fock (TDHF) theory. We discuss the time-dependence of transfer and show that the potential barriers seen by individual single-particle states can be considerably different than the effective barrier for the two interacting nuclei having a single center-of-mass. For this reason we observe a substantial transfer probability even at energies below the effective barrier.Comment: 6 pages, 9 figure

    Molecular networks of insulin signaling and amino acid metabolism in subcutaneous adipose tissue are altered by body condition in periparturient Holstein cows

    Full text link
    [EN] Peripartal cows mobilize not only body fat but also body protein to satisfy their energy requirements. The objective of this study was to determine the effect of prepartum BCS on blood biomarkers related to energy and nitrogen metabolism, and mRNA and protein abundance associated with AA metabolism and insulin signaling in subcutaneous adipose tissue (SAT) in peripartal cows. Twenty-two multiparous Holstein cows were retrospectively classified into a high BCS (HBCS; n = 11, BCS >= 3.5) or normal BCS (NBCS; n = 11, BCS <= 3.17) group at d 28 before expected parturition. Cows were fed the same diet as a total mixed ration before parturition and were fed the same lactation diet postpartum. Blood samples collected at -10, 7, 15, and 30 d relative to parturition were used for analyses of biomarkers associated with energy and nitrogen metabolism. Biopsies of SAT harvested at -15, 7, and 30 d relative to parturition were used for mRNA (real timePCR) and protein abundance (Western blotting) assays. Data were subjected to ANOVA using the MIXED procedure of SAS (v. 9.4; SAS institute Inc., Cary, NC), with P <= 0.05 being the threshold for significance. Cows in HBCS had greater overall plasma nonesterified fatty acid concentrations, due to marked increases at 7 and 15 d postpartum. This response was similar (BCS x Day effect) to protein abundance of phosphorylated (p) protein kinase B (p-AKT), the insulin-induced glucose transporter (SLC2A4), and the sodium-coupled neutral AA transporter (SLC38A1). Abundance of these proteins was lower at -15 d compared with NBCS cows, and either increased (SLC2A4, SLC38A1) or did not change (p-AKT) at 7 d postpartum in IIBCS. Unlike protein abundance, however, overall mRNA abundances of the high-affinity cationic (SLC7A1), proton-coupled (SLC96A1), and sodium-coupled amino acid transporters (SLC,98,42) were greater in IIBCS than NBCS cows, due to upregulation in the postpartum phase. Those responses were similar to protein abundance of p-mTOR, which increased (BCS x Day effect) at 7 d in HBCS compared with NBCS cows. mRNA abundance of argininosuccinate lyase (ASL) and arginase 1 (ARG1) also was greater overall in HBCS cows. Together, these responses suggested impaired insulin signaling, coupled with greater postpartum AA transport rate and urea cycle activity in SAT of HBCS cows. An in vitro study using adipocyte and macrophage cocultures stimulated with various concentrations of fatty acids could provide some insights into the role of immune cells in modulating adipose tissue immunometabolic status, including insulin resistance and AA metabolism.Y. Liang is a recipient of a doctoral fellowship from the China Scholarship Council (CSC, Beijing, China) to perform his PhD studies at the University of Illinois (Urbana). A. S. Alharthi received a fellowship from King Saud University (Riyadh, Saudi Arabia) to perform his PhD studies at the University of Illinois (Urbana). A. A. Elolimy was recipient of a fellowship from the Higher Education Ministry (Cairo, Egypt) to perform his PhD studies at the University of Illinois (Urbana). We thank Perdue AgriBusiness (Salisbury, MD) for the donation of ProvAAL2 AADvantage during the course of the experiment. The authors declare no conflicts of interest.Liang, Y.; Alharthi, A.; Elolimy, A.; Bucktrout, R.; Lopreiato, V.; Cortes, I.; Xu, C.... (2020). Molecular networks of insulin signaling and amino acid metabolism in subcutaneous adipose tissue are altered by body condition in periparturient Holstein cows. Journal of Dairy Science. 103(11):10459-10476. https://doi.org/10.3168/jds.2020-18612S104591047610311Akter, S. H., Häussler, S., Germeroth, D., von Soosten, D., Dänicke, S., Südekum, K.-H., & Sauerwein, H. (2012). Immunohistochemical characterization of phagocytic immune cell infiltration into different adipose tissue depots of dairy cows during early lactation. Journal of Dairy Science, 95(6), 3032-3044. doi:10.3168/jds.2011-4856Alharthi, A., Zhou, Z., Lopreiato, V., Trevisi, E., & Loor, J. J. (2018). Body condition score prior to parturition is associated with plasma and adipose tissue biomarkers of lipid metabolism and inflammation in Holstein cows. Journal of Animal Science and Biotechnology, 9(1). doi:10.1186/s40104-017-0221-1Appuhamy, J. A. D. R. N., Knoebel, N. A., Nayananjalie, W. A. D., Escobar, J., & Hanigan, M. D. (2012). Isoleucine and Leucine Independently Regulate mTOR Signaling and Protein Synthesis in MAC-T Cells and Bovine Mammary Tissue Slices. The Journal of Nutrition, 142(3), 484-491. doi:10.3945/jn.111.152595Arriarán, S., Agnelli, S., Remesar, X., Fernández-López, J.-A., & Alemany, M. (2015). The urea cycle of rat white adipose tissue. RSC Advances, 5(113), 93403-93414. doi:10.1039/c5ra16398fBatistel, F., Arroyo, J. M., Bellingeri, A., Wang, L., Saremi, B., Parys, C., … Loor, J. J. (2017). Ethyl-cellulose rumen-protected methionine enhances performance during the periparturient period and early lactation in Holstein dairy cows. Journal of Dairy Science, 100(9), 7455-7467. doi:10.3168/jds.2017-12689Batistel, F., Arroyo, J. M., Garces, C. I. M., Trevisi, E., Parys, C., Ballou, M. A., … Loor, J. J. (2018). Ethyl-cellulose rumen-protected methionine alleviates inflammation and oxidative stress and improves neutrophil function during the periparturient period and early lactation in Holstein dairy cows. Journal of Dairy Science, 101(1), 480-490. doi:10.3168/jds.2017-13185Bauchart-Thevret, C., Cui, L., Wu, G., & Burrin, D. G. (2010). Arginine-induced stimulation of protein synthesis and survival in IPEC-J2 cells is mediated by mTOR but not nitric oxide. American Journal of Physiology-Endocrinology and Metabolism, 299(6), E899-E909. doi:10.1152/ajpendo.00068.2010Bewley, J. M., & Schutz, M. M. (2008). An Interdisciplinary Review of Body Condition Scoring for Dairy Cattle. The Professional Animal Scientist, 24(6), 507-529. doi:10.15232/s1080-7446(15)30901-3Bionaz, M., Chen, S., Khan, M. J., & Loor, J. J. (2013). Functional Role of PPARs in Ruminants: Potential Targets for Fine-Tuning Metabolism during Growth and Lactation. PPAR Research, 2013, 1-28. doi:10.1155/2013/684159Bionaz, M., Trevisi, E., Calamari, L., Librandi, F., Ferrari, A., & Bertoni, G. (2007). Plasma Paraoxonase, Health, Inflammatory Conditions, and Liver Function in Transition Dairy Cows. Journal of Dairy Science, 90(4), 1740-1750. doi:10.3168/jds.2006-445Burgos, S. A., Dai, M., & Cant, J. P. (2010). Nutrient availability and lactogenic hormones regulate mammary protein synthesis through the mammalian target of rapamycin signaling pathway. Journal of Dairy Science, 93(1), 153-161. doi:10.3168/jds.2009-2444Busato, A., Faissler, D., Kupfer, U., & Blum, J. W. (2002). Body Condition Scores in Dairy Cows: Associations with Metabolic and Endocrine Changes in Healthy Dairy Cows. Journal of Veterinary Medicine Series A, 49(9), 455-460. doi:10.1046/j.1439-0442.2002.00476.xCai, H., Dong, L. Q., & Liu, F. (2016). Recent Advances in Adipose mTOR Signaling and Function: Therapeutic Prospects. Trends in Pharmacological Sciences, 37(4), 303-317. doi:10.1016/j.tips.2015.11.011Caroprese, M., Albenzio, M., Marino, R., Santillo, A., & Sevi, A. (2012). Immune response and milk production of dairy cows fed graded levels of rumen-protected glutamine. Research in Veterinary Science, 93(1), 202-209. doi:10.1016/j.rvsc.2011.07.015Closs, E. I., Boissel, J.-P., Habermeier, A., & Rotmann, A. (2006). Structure and Function of Cationic Amino Acid Transporters (CATs). Journal of Membrane Biology, 213(2), 67-77. doi:10.1007/s00232-006-0875-7Contreras, G. A., Kabara, E., Brester, J., Neuder, L., & Kiupel, M. (2015). Macrophage infiltration in the omental and subcutaneous adipose tissues of dairy cows with displaced abomasum. Journal of Dairy Science, 98(9), 6176-6187. doi:10.3168/jds.2015-9370Cynober, L., Boucher, J. L., & Vasson, M.-P. (1995). Arginine metabolism in mammals. The Journal of Nutritional Biochemistry, 6(8), 402-413. doi:10.1016/0955-2863(95)00066-9Dann, H. M., Morin, D. E., Bollero, G. A., Murphy, M. R., & Drackley, J. K. (2005). Prepartum Intake, Postpartum Induction of Ketosis, and Periparturient Disorders Affect the Metabolic Status of Dairy Cows. Journal of Dairy Science, 88(9), 3249-3264. doi:10.3168/jds.s0022-0302(05)73008-3De Koster, J., Hostens, M., Van Eetvelde, M., Hermans, K., Moerman, S., Bogaert, H., … Opsomer, G. (2015). Insulin response of the glucose and fatty acid metabolism in dry dairy cows across a range of body condition scores. Journal of Dairy Science, 98(7), 4580-4592. doi:10.3168/jds.2015-9341De Koster, J., Strieder-Barboza, C., de Souza, J., Lock, A. L., & Contreras, G. A. (2018). Short communication: Effects of body fat mobilization on macrophage infiltration in adipose tissue of early lactation dairy cows. Journal of Dairy Science, 101(8), 7608-7613. doi:10.3168/jds.2017-14318De Koster, J., Urh, C., Hostens, M., Van den Broeck, W., Sauerwein, H., & Opsomer, G. (2017). Relationship between serum adiponectin concentration, body condition score, and peripheral tissue insulin response of dairy cows during the dry period. Domestic Animal Endocrinology, 59, 100-104. doi:10.1016/j.domaniend.2016.12.004De Koster, J., Van den Broeck, W., Hulpio, L., Claeys, E., Van Eetvelde, M., Hermans, K., … Opsomer, G. (2016). Influence of adipocyte size and adipose depot on the in vitro lipolytic activity and insulin sensitivity of adipose tissue in dairy cows at the end of the dry period. Journal of Dairy Science, 99(3), 2319-2328. doi:10.3168/jds.2015-10440Depreester, E., De Koster, J., Van Poucke, M., Hostens, M., Van den Broeck, W., Peelman, L., … Opsomer, G. (2018). Influence of adipocyte size and adipose depot on the number of adipose tissue macrophages and the expression of adipokines in dairy cows at the end of pregnancy. Journal of Dairy Science, 101(7), 6542-6555. doi:10.3168/jds.2017-13777Durante, W. (2013). Role of Arginase in Vessel Wall Remodeling. Frontiers in Immunology, 4. doi:10.3389/fimmu.2013.00111Edmonson, A. J., Lean, I. J., Weaver, L. D., Farver, T., & Webster, G. (1989). A Body Condition Scoring Chart for Holstein Dairy Cows. Journal of Dairy Science, 72(1), 68-78. doi:10.3168/jds.s0022-0302(89)79081-0Frayn, K. N., Khan, K., Coppack, S. W., & Elia, M. (1991). Amino acid metabolism in human subcutaneous adipose tissue in vivo. Clinical Science, 80(5), 471-474. doi:10.1042/cs0800471Ghaffari, M. H., Sadri, H., Schuh, K., Dusel, G., Frieten, D., Koch, C., … Sauerwein, H. (2019). Biogenic amines: Concentrations in serum and skeletal muscle from late pregnancy until early lactation in dairy cows with high versus normal body condition score. Journal of Dairy Science, 102(7), 6571-6586. doi:10.3168/jds.2018-16034Ghaffari, M. H., Schuh, K., Dusel, G., Frieten, D., Koch, C., Prehn, C., … Sadri, H. (2019). Mammalian target of rapamycin signaling and ubiquitin-proteasome–related gene expression in skeletal muscle of dairy cows with high or normal body condition score around calving. Journal of Dairy Science, 102(12), 11544-11560. doi:10.3168/jds.2019-17130Ghaffari, M. H., Jahanbekam, A., Sadri, H., Schuh, K., Dusel, G., Prehn, C., … Sauerwein, H. (2019). Metabolomics meets machine learning: Longitudinal metabolite profiling in serum of normal versus overconditioned cows and pathway analysis. Journal of Dairy Science, 102(12), 11561-11585. doi:10.3168/jds.2019-17114Gonzalez, E., & McGraw, T. E. (2009). Insulin-modulated Akt subcellular localization determines Akt isoform-specific signaling. Proceedings of the National Academy of Sciences, 106(17), 7004-7009. doi:10.1073/pnas.0901933106González, F. D., Muiño, R., Pereira, V., Campos, R., & Benedito, J. L. (2011). Relationship among blood indicators of lipomobilization and hepatic function during early lactation in high-yielding dairy cows. Journal of Veterinary Science, 12(3), 251. doi:10.4142/jvs.2011.12.3.251Häussler, S., Germeroth, D., Laubenthal, L., Ruda, L. F., Rehage, J., Dänicke, S., & Sauerwein, H. (2017). Short Communication: Immunohistochemical localization of the immune cell marker CD68 in bovine adipose tissue: impact of tissue alterations and excessive fat accumulation in dairy cows. Veterinary Immunology and Immunopathology, 183, 45-48. doi:10.1016/j.vetimm.2016.12.005Horie, T., Fukasawa, K., Iezaki, T., Park, G., Onishi, Y., Ozaki, K., … Hinoi, E. (2017). Hypoxic Stress Upregulates the Expression of Slc38a1 in Brown Adipocytes via Hypoxia-Inducible Factor-1α. Pharmacology, 101(1-2), 64-71. doi:10.1159/000480405Hosogai, N., Fukuhara, A., Oshima, K., Miyata, Y., Tanaka, S., Segawa, K., … Shimomura, I. (2007). Adipose Tissue Hypoxia in Obesity and Its Impact on Adipocytokine Dysregulation. Diabetes, 56(4), 901-911. doi:10.2337/db06-0911Hu, H., Moon, J., Chung, J. H., Kim, O. Y., Yu, R., & Shin, M.-J. (2015). Arginase inhibition ameliorates adipose tissue inflammation in mice with diet-induced obesity. Biochemical and Biophysical Research Communications, 464(3), 840-847. doi:10.1016/j.bbrc.2015.07.048Ibrahim, M. M. (2010). Subcutaneous and visceral adipose tissue: structural and functional differences. Obesity Reviews, 11(1), 11-18. doi:10.1111/j.1467-789x.2009.00623.xJafari, A., Emmanuel, D. G. V., Christopherson, R. J., Thompson, J. R., Murdoch, G. K., Woodward, J., … Ametaj, B. N. (2006). Parenteral Administration of Glutamine Modulates Acute Phase Response in Postparturient Dairy Cows. Journal of Dairy Science, 89(12), 4660-4668. doi:10.3168/jds.s0022-0302(06)72516-4Jager, J., Grémeaux, T., Cormont, M., Le Marchand-Brustel, Y., & Tanti, J.-F. (2007). Interleukin-1β-Induced Insulin Resistance in Adipocytes through Down-Regulation of Insulin Receptor Substrate-1 Expression. Endocrinology, 148(1), 241-251. doi:10.1210/en.2006-0692Jamali Emam Gheise, N., Riasi, A., Zare Shahneh, A., Celi, P., & Ghoreishi, S. M. (2017). Effect of pre-calving body condition score and previous lactation on BCS change, blood metabolites, oxidative stress and milk production in Holstein dairy cows. Italian Journal of Animal Science, 16(3), 474-483. doi:10.1080/1828051x.2017.1290507Janovick, N. A., Boisclair, Y. R., & Drackley, J. K. (2011). Prepartum dietary energy intake affects metabolism and health during the periparturient period in primiparous and multiparous Holstein cows. Journal of Dairy Science, 94(3), 1385-1400. doi:10.3168/jds.2010-3303Javed, K., & Fairweather, S. J. (2019). Amino acid transporters in the regulation of insulin secretion and signalling. Biochemical Society Transactions, 47(2), 571-590. doi:10.1042/bst20180250Ji, P., Drackley, J. K., Khan, M. J., & Loor, J. J. (2014). Inflammation- and lipid metabolism-related gene network expression in visceral and subcutaneous adipose depots of Holstein cows. Journal of Dairy Science, 97(6), 3441-3448. doi:10.3168/jds.2013-7296Ji, P., Drackley, J. K., Khan, M. J., & Loor, J. J. (2014). Overfeeding energy upregulates peroxisome proliferator-activated receptor (PPAR)γ-controlled adipogenic and lipolytic gene networks but does not affect proinflammatory markers in visceral and subcutaneous adipose depots of Holstein cows. Journal of Dairy Science, 97(6), 3431-3440. doi:10.3168/jds.2013-7295Ji, P., Osorio, J. S., Drackley, J. K., & Loor, J. J. (2012). Overfeeding a moderate energy diet prepartum does not impair bovine subcutaneous adipose tissue insulin signal transduction and induces marked changes in peripartal gene network expression. Journal of Dairy Science, 95(8), 4333-4351. doi:10.3168/jds.2011-5079Kanda, H. (2006). MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. Journal of Clinical Investigation, 116(6), 1494-1505. doi:10.1172/jci26498Kenéz, Á., Ruda, L., Dänicke, S., & Huber, K. (2019). Insulin signaling and insulin response in subcutaneous and retroperitoneal adipose tissue in Holstein cows during the periparturient period. Journal of Dairy Science, 102(12), 11718-11729. doi:10.3168/jds.2019-16873Laplante, M., & Sabatini, D. M. (2009). mTOR signaling at a glance. Journal of Cell Science, 122(20), 3589-3594. doi:10.1242/jcs.051011Laubenthal, L., Ruda, L., Sultana, N., Winkler, J., Rehage, J., Meyer, U., … Häussler, S. (2017). Effect of increasing body condition on oxidative stress and mitochondrial biogenesis in subcutaneous adipose tissue depot of nonlactating dairy cows. Journal of Dairy Science, 100(6), 4976-4986. doi:10.3168/jds.2016-12356Le Floc’h, N., Melchior, D., & Obled, C. (2004). Modifications of protein and amino acid metabolism during inflammation and immune system activation. Livestock Production Science, 87(1), 37-45. doi:10.1016/j.livprodsci.2003.09.005Li, Y., Wei, H., Li, F., Chen, S., Duan, Y., Guo, Q., … Yin, Y. (2016). Supplementation of branched-chain amino acids in protein-restricted diets modulates the expression levels of amino acid transporters and energy metabolism associated regulators in the adipose tissue of growing pigs. Animal Nutrition, 2(1), 24-32. doi:10.1016/j.aninu.2016.01.003Liang, Y., Alharthi, A. S., Bucktrout, R., Elolimy, A. A., Lopreiato, V., Martinez-Cortés, I., … Loor, J. J. (2020). Body condition alters glutathione and nuclear factor erythroid 2-like 2 (NFE2L2)–related antioxidant network abundance in subcutaneous adipose tissue of periparturient Holstein cows. Journal of Dairy Science, 103(7), 6439-6453. doi:10.3168/jds.2019-17813Liang, Y., Batistel, F., Parys, C., & Loor, J. J. (2019). Methionine supply during the periparturient period enhances insulin signaling, amino acid transporters, and mechanistic target of rapamycin pathway proteins in adipose tissue of Holstein cows. Journal of Dairy Science, 102(5), 4403-4414. doi:10.3168/jds.2018-15738Liao, W., Nguyen, M. T. A., Yoshizaki, T., Favelyukis, S., Patsouris, D., Imamura, T., … Olefsky, J. M. (2007). Suppression of PPAR-γ attenuates insulin-stimulated glucose uptake by affecting both GLUT1 and GLUT4 in 3T3-L1 adipocytes. American Journal of Physiology-Endocrinology and Metabolism, 293(1), E219-E227. doi:10.1152/ajpendo.00695.2006Locher, L. F., Meyer, N., Weber, E.-M., Rehage, J., Meyer, U., Dänicke, S., & Huber, K. (2011). Hormone-sensitive lipase protein expression and extent of phosphorylation in subcutaneous and retroperitoneal adipose tissues in the periparturient dairy cow. Journal of Dairy Science, 94(9), 4514-4523. doi:10.3168/jds.2011-4145Ma, Y. F., Zhao, L., Coleman, D. N., Gao, M., & Loor, J. J. (2019). Tea polyphenols protect bovine mammary epithelial cells from hydrogen peroxide-induced oxidative damage in vitro by activating NFE2L2/HMOX1 pathways. Journal of Dairy Science, 102(2), 1658-1670. doi:10.3168/jds.2018-15047Mackenzie, B., & Erickson, J. D. (2004). Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family. Pfl�gers Archiv European Journal of Physiology, 447(5), 784-795. doi:10.1007/s00424-003-1117-9Mann, S., Nydam, D. V., Abuelo, A., Leal Yepes, F. A., Overton, T. R., & Wakshlag, J. J. (2016). Insulin signaling, inflammation, and lipolysis in subcutaneous adipose tissue of transition dairy cows either overfed energy during the prepartum period or fed a controlled-energy diet. Journal of Dairy Science, 99(8), 6737-6752. doi:10.3168/jds.2016-10969Megahed, A. A., Hiew, M. W. H., Ragland, D., & Constable, P. D. (2019). Changes in skeletal muscle thickness and echogenicity and plasma creatinine concentration as indicators of protein and intramuscular fat mobilization in periparturient dairy cows. Journal of Dairy Science, 102(6), 5550-5565. doi:10.3168/jds.2018-15063Menchini, R. J., & Chaudhry, F. A. (2019). Multifaceted regulation of the system A transporter Slc38a2 suggests nanoscale regulation of amino acid metabolism and cellular signaling. Neuropharmacology, 161, 107789. doi:10.1016/j.neuropharm.2019.107789Minuti, A., Bionaz, M., Lopreiato, V., Janovick, N. A., Rodriguez-Zas, S. L., Drackley, J. K., & Loor, J. J. (2020). Prepartum dietary energy intake alters adipose tissue transcriptome profiles during the periparturient period in Holstein dairy cows. Journal of Animal Science and Biotechnology, 11(1). doi:10.1186/s40104-019-0409-7Moisá, S. J., Ji, P., Drackley, J. K., Rodriguez-Zas, S. L., & Loor, J. J. (2017). Transcriptional changes in mesenteric and subcutaneous adipose tissue from Holstein cows in response to plane of dietary energy. Journal of Animal Science and Biotechnology, 8(1). doi:10.1186/s40104-017-0215-zMoyes, K. M., Drackley, J. K., Morin, D. E., & Loor, J. J. (2010). Greater expression of TLR2, TLR4, and IL6 due to negative energy balance is associated with lower expression of HLA-DRA and HLA-A in bovine blood neutrophils after intramammary mastitis challenge with Streptococcus uberis. Functional & Integrative Genomics, 10(1), 53-61. doi:10.1007/s10142-009-0154-7Mukesh, M., Bionaz, M., Graugnard, D. E., Drackley, J. K., & Loor, J. J. (2010). Adipose tissue depots of Holstein cows are immune responsive: Inflammatory gene expression in vitro. Domestic Animal Endocrinology, 38(3), 168-178. doi:10.1016/j.domaniend.2009.10.001Newgard, C. B. (2017). Metabolomics and Metabolic Diseases: Where Do We Stand? Cell Metabolism, 25(1), 43-56. doi:10.1016/j.cmet.2016.09.018Newgard, C. B., An, J., Bain, J. R., Muehlbauer, M. J., Stevens, R. D., Lien, L. F., … Svetkey, L. P. (2009). A Branched-Chain Amino Acid-Related Metabolic Signature that Differentiates Obese and Lean Humans and Contributes to Insulin Resistance. Cell Metabolism, 9(4), 311-326. doi:10.1016/j.cmet.2009.02.002Newman, A. W., Miller, A., Leal Yepes, F. A., Bitsko, E., Nydam, D., & Mann, S. (2019). The effect of the transition period and postpartum body weight loss on macrophage infiltrates in bovine subcutaneous adipose tissue. Journal of Dairy Science, 102(2), 1693-1701. doi:10.3168/jds.

    Breakup of 17^{17}F on 208^{208}Pb near the Coulomb barrier

    Full text link
    Angular distributions of oxygen produced in the breakup of 17^{17}F incident on a 208^{208}Pb target have been measured around the grazing angle at beam energies of 98 and 120 MeV. The data are dominated by the proton stripping mechanism and are well reproduced by dynamical calculations. The measured breakup cross section is approximately a factor of 3 less than that of fusion at 98 MeV. The influence of breakup on fusion is discussed.Comment: 7 pages, 8 figure

    Body condition alters glutathione and nuclear factor erythroid 2-like 2 (NFE2L2)-related antioxidant network abundance in subcutaneous adipose tissue of periparturient Holstein cows

    Full text link
    [EN] Dairy cows with high body condition score (BCS) in late prepartum are more susceptible to oxidative stress (OS). Nuclear factor erythroid 2-like 2 (NFE2L2) is a major antioxidant transcription factor. We investigated the effect of precalving BCS on blood biomarkers associated with OS, inflammation, and liver function, along with mRNA and protein abundance of targets related to NFE2L2 and glutathione (GSH) metabolism in s.c. adipose tissue (SAT) of periparturient dairy cows. Twenty-two multiparous Holstein cows were retrospectively classified into a high BCS (HBCS; n = 11, BCS ¿3.5) or normal BCS (NBCS; n = 11, BCS ¿3.17) on d 28 before parturition. Cows were fed a corn silage- and wheat straw-based total mixed ration during late prepartum, and a corn silage- and alfalfa hay-based total mixed ration postpartum. Blood samples obtained at ¿10, 7, 15, and 30 d relative to parturition were used for analyses of biomarkers associated with inflammation, including albumin, ceruloplasmin, haptoglobin, and myeloperoxidase, as well as OS, including ferric reducing ability of plasma (FRAP), reactive oxygen species (ROS), and ß-carotene. Adipose biopsies harvested at ¿15, 7, and 30 d relative to parturition were analyzed for mRNA (real-time quantitative PCR) and protein abundance (Western blotting) of targets associated with the antioxidant transcription regulator nuclear factor, NFE2L2, and GSH metabolism pathway. In addition, concentrations of GSH, ROS and malondialdehyde were measured. High BCS cows had lower prepartum dry matter intake expressed as a percentage of body weight along with greater BCS loss between ¿4 and 4 wk relative to parturition. Plasma concentrations of ROS and FRAP increased after parturition regardless of treatment. Compared with NBCS, HBCS cows had greater concentrations of FRAP at d 7 postpartum, which coincided with peak values in those cows. In addition, NBCS cows experienced a marked decrease in plasma ROS after d 7 postpartum, while HBCS cows maintained a constant concentration by d 30 postpartum. Overall, ROS concentrations in SAT were greater in HBCS cows. However, overall mRNA abundance of NFE2L2 was lower and cullin 3 (CUL3), a negative regulator of NFE2L2, was greater in HBCS cows. Although HBCS cows had greater overall total protein abundance of NFE2L2 in SAT, ratio of phosphorylated NFE2L2 to total NFE2L2 was lower, suggesting a decrease in the activity of this antioxidant system. Overall, mRNA abundance of the GSH metabolism-related genes glutathione reductase (GSR), glutathione peroxidase 1 (GPX1), and transaldolase 1 (TALDO1), along with protein abundance of glutathione S-transferase mu 1 (GSTM1), were greater in HBCS cows. Data suggest that HBCS cows might experience greater systemic OS after parturition, while increased abundance of mRNA and protein components of the GSH metabolism pathway in SAT might help alleviate tissue oxidant status. Data underscored the importance of antioxidant mechanisms at the tissue level. Thus, targeting these pathways in SAT during the periparturient period via nutrition might help control tissue remodeling while allowing optimal performance.Y. Liang is a recipient of a doctoral fellowship from China Scholarship Council (CSC, Beijing, China). A. S. Alharthi received a fellowship from King Saud University to perform his PhD studies at the University of Illinois (Urbana). A. A. Elolimy was recipient of a fellowship from Higher Education Ministry, Egypt to perform his Ph.D. studies at the University of Illinois (Urbana). We thank Perdue AgriBusiness (Salisbury, MD) for the donation of ProvAAL2 AADvantage during the course of the experiment. The authors have not stated any conflicts of interest.Liang, Y.; Alharthi, A.; Bucktrout, R.; Elolimy, A.; Lopreiato, V.; Martinez-Cortes, I.; Xu, C.... (2020). Body condition alters glutathione and nuclear factor erythroid 2-like 2 (NFE2L2)-related antioxidant network abundance in subcutaneous adipose tissue of periparturient Holstein cows. Journal of Dairy Science. 103(7):6439-6453. https://doi.org/10.3168/jds.2019-17813S643964531037Alharthi, A., Zhou, Z., Lopreiato, V., Trevisi, E., & Loor, J. J. (2018). Body condition score prior to parturition is associated with plasma and adipose tissue biomarkers of lipid metabolism and inflammation in Holstein cows. Journal of Animal Science and Biotechnology, 9(1). doi:10.1186/s40104-017-0221-1Aquilano, K., Baldelli, S., & Ciriolo, M. R. (2014). Glutathione: new roles in redox signaling for an old antioxidant. Frontiers in Pharmacology, 5. doi:10.3389/fphar.2014.00196Arias, E., González, A., Shimada, A., Varela-Echavarria, A., Ruiz-López, F., During, A., & Mora, O. (2009). β-Carotene is incorporated or mobilized along with triglycerides in bovine adipose tissue in response to insulin or epinephrine. Journal of Animal Physiology and Animal Nutrition, 93(1), 83-93. doi:10.1111/j.1439-0396.2007.00783.xBatistel, F., Arroyo, J. M., Bellingeri, A., Wang, L., Saremi, B., Parys, C., … Loor, J. J. (2017). Ethyl-cellulose rumen-protected methionine enhances performance during the periparturient period and early lactation in Holstein dairy cows. Journal of Dairy Science, 100(9), 7455-7467. doi:10.3168/jds.2017-12689Batistel, F., Arroyo, J. M., Garces, C. I. M., Trevisi, E., Parys, C., Ballou, M. A., … Loor, J. J. (2018). Ethyl-cellulose rumen-protected methionine alleviates inflammation and oxidative stress and improves neutrophil function during the periparturient period and early lactation in Holstein dairy cows. Journal of Dairy Science, 101(1), 480-490. doi:10.3168/jds.2017-13185Bernabucci, U., Ronchi, B., Lacetera, N., & Nardone, A. (2005). Influence of Body Condition Score on Relationships Between Metabolic Status and Oxidative Stress in Periparturient Dairy Cows. Journal of Dairy Science, 88(6), 2017-2026. doi:10.3168/jds.s0022-0302(05)72878-2Bertoni, G., Trevisi, E., Han, X., & Bionaz, M. (2008). Effects of Inflammatory Conditions on Liver Activity in Puerperium Period and Consequences for Performance in Dairy Cows. Journal of Dairy Science, 91(9), 3300-3310. doi:10.3168/jds.2008-0995Bionaz, M., Trevisi, E., Calamari, L., Librandi, F., Ferrari, A., & Bertoni, G. (2007). Plasma Paraoxonase, Health, Inflammatory Conditions, and Liver Function in Transition Dairy Cows. Journal of Dairy Science, 90(4), 1740-1750. doi:10.3168/jds.2006-445Bozinovski, S., Seow, H. J., Crack, P. J., Anderson, G. P., & Vlahos, R. (2012). Glutathione Peroxidase-1 Primes Pro-Inflammatory Cytokine Production after LPS Challenge In Vivo. PLoS ONE, 7(3), e33172. doi:10.1371/journal.pone.0033172Buelna-Chontal, M., & Zazueta, C. (2013). Redox activation of Nrf2 & NF-κB: A double end sword? Cellular Signalling, 25(12), 2548-2557. doi:10.1016/j.cellsig.2013.08.007Cerón,, J. J., Eckersall,, P. D., & Martínez-Subiela, S. (2005). Acute phase proteins in dogs and cats: current knowledge and future perspectives. Veterinary Clinical Pathology, 34(2), 85-99. doi:10.1111/j.1939-165x.2005.tb00019.xCohen, G., & Hochstein, P. (1963). Glutathione Peroxidase: The Primary Agent for the Elimination of Hydrogen Peroxide in Erythrocytes*. Biochemistry, 2(6), 1420-1428. doi:10.1021/bi00906a038De Koster, J., Hostens, M., Van Eetvelde, M., Hermans, K., Moerman, S., Bogaert, H., … Opsomer, G. (2015). Insulin response of the glucose and fatty acid metabolism in dry dairy cows across a range of body condition scores. Journal of Dairy Science, 98(7), 4580-4592. doi:10.3168/jds.2015-9341De Koster, J., Strieder-Barboza, C., de Souza, J., Lock, A. L., & Contreras, G. A. (2018). Short communication: Effects of body fat mobilization on macrophage infiltration in adipose tissue of early lactation dairy cows. Journal of Dairy Science, 101(8), 7608-7613. doi:10.3168/jds.2017-14318De Koster, J., Van den Broeck, W., Hulpio, L., Claeys, E., Van Eetvelde, M., Hermans, K., … Opsomer, G. (2016). Influence of adipocyte size and adipose depot on the in vitro lipolytic activity and insulin sensitivity of adipose tissue in dairy cows at the end of the dry period. Journal of Dairy Science, 99(3), 2319-2328. doi:10.3168/jds.2015-10440Depreester, E., De Koster, J., Van Poucke, M., Hostens, M., Van den Broeck, W., Peelman, L., … Opsomer, G. (2018). Influence of adipocyte size and adipose depot on the number of adipose tissue macrophages and the expression of adipokines in dairy cows at the end of pregnancy. Journal of Dairy Science, 101(7), 6542-6555. doi:10.3168/jds.2017-13777Depreester, E., Meyer, E., Demeyere, K., Van Eetvelde, M., Hostens, M., & Opsomer, G. (2017). Flow cytometric assessment of myeloperoxidase in bovine blood neutrophils and monocytes. Journal of Dairy Science, 100(9), 7638-7647. doi:10.3168/jds.2016-12186Dickinson, D. A., & Forman, H. J. (2002). Cellular glutathione and thiols metabolism. Biochemical Pharmacology, 64(5-6), 1019-1026. doi:10.1016/s0006-2952(02)01172-3Drevet, J. R. (2006). The antioxidant glutathione peroxidase family and spermatozoa: A complex story. Molecular and Cellular Endocrinology, 250(1-2), 70-79. doi:10.1016/j.mce.2005.12.027Edmonson, A. J., Lean, I. J., Weaver, L. D., Farver, T., & Webster, G. (1989). A Body Condition Scoring Chart for Holstein Dairy Cows. Journal of Dairy Science, 72(1), 68-78. doi:10.3168/jds.s0022-0302(89)79081-0Frey, S. K., & Vogel, S. (2011). Vitamin A Metabolism and Adipose Tissue Biology. Nutrients, 3(1), 27-39. doi:10.3390/nu3010027Gessner, D. K., Schlegel, G., Keller, J., Schwarz, F. J., Ringseis, R., & Eder, K. (2013). Expression of target genes of nuclear factor E2-related factor 2 in the liver of dairy cows in the transition period and at different stages of lactation. Journal of Dairy Science, 96(2), 1038-1043. doi:10.3168/jds.2012-5967Graugnard, D. E., Moyes, K. M., Trevisi, E., Khan, M. J., Keisler, D., Drackley, J. K., … Loor, J. J. (2013). Liver lipid content and inflammometabolic indices in peripartal dairy cows are altered in response to prepartal energy intake and postpartal intramammary inflammatory challenge. Journal of Dairy Science, 96(2), 918-935. doi:10.3168/jds.2012-5676Han, L., Batistel, F., Ma, Y., Alharthi, A. S. M., Parys, C., & Loor, J. J. (2018). Methionine supply alters mammary gland antioxidant gene networks via phosphorylation of nuclear factor erythroid 2-like 2 (NFE2L2) protein in dairy cows during the periparturient period. Journal of Dairy Science, 101(9), 8505-8512. doi:10.3168/jds.2017-14206Han, L. Q., Zhou, Z., Ma, Y., Batistel, F., Osorio, J. S., & Loor, J. J. (2018). Phosphorylation of nuclear factor erythroid 2-like 2 (NFE2L2) in mammary tissue of Holstein cows during the periparturient period is associated with mRNA abundance of antioxidant gene networks. Journal of Dairy Science, 101(7), 6511-6522. doi:10.3168/jds.2017-14257Harvey, C. J., Thimmulappa, R. K., Singh, A., Blake, D. J., Ling, G., Wakabayashi, N., … Biswal, S. (2009). Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress. Free Radical Biology and Medicine, 46(4), 443-453. doi:10.1016/j.freeradbiomed.2008.10.040Holtenius, K., Agenäs, S., Delavaud, C., & Chilliard, Y. (2003). Effects of Feeding Intensity During the Dry Period. 2. Metabolic and Hormonal Responses. Journal of Dairy Science, 86(3), 883-891. doi:10.3168/jds.s0022-0302(03)73671-6Jaakson, H., Karis, P., Ling, K., Ilves-Luht, A., Samarütel, J., Henno, M., … Ots, M. (2018). Adipose tissue insulin receptor and glucose transporter 4 expression, and blood glucose and insulin responses during glucose tolerance tests in transition Holstein cows with different body condition. Journal of Dairy Science, 101(1), 752-766. doi:10.3168/jds.2017-12877Ji, P., Osorio, J. S., Drackley, J. K., & Loor, J. J. (2012). Overfeeding a moderate energy diet prepartum does not impair bovine subcutaneous adipose tissue insulin signal transduction and induces marked changes in peripartal gene network expression. Journal of Dairy Science, 95(8), 4333-4351. doi:10.3168/jds.2011-5079Kobayashi, H., Matsuda, M., Fukuhara, A., Komuro, R., & Shimomura, I. (2009). Dysregulated glutathione metabolism links to impaired insulin action in adipocytes. American Journal of Physiology-Endocrinology and Metabolism, 296(6), E1326-E1334. doi:10.1152/ajpendo.90921.2008Lacetera, N., Scalia, D., Bernabucci, U., Ronchi, B., Pirazzi, D., & Nardone, A. (2005). Lymphocyte Functions in Overconditioned Cows Around Parturition. Journal of Dairy Science, 88(6), 2010-2016. doi:10.3168/jds.s0022-0302(05)72877-0LeBlanc, S. J., Herdt, T. H., Seymour, W. M., Duffield, T. F., & Leslie, K. E. (2004). Peripartum Serum Vitamin E, Retinol, and Beta-Carotene in Dairy Cattle and Their Associations with Disease. Journal of Dairy Science, 87(3), 609-619. doi:10.3168/jds.s0022-0302(04)73203-8Liang, Y., Batistel, F., Parys, C., & Loor, J. J. (2019). Glutathione metabolism and nuclear factor erythroid 2-like 2 (NFE2L2)-related proteins in adipose tissue are altered by supply of ethyl-cellulose rumen-protected methionine in peripartal Holstein cows. Journal of Dairy Science, 102(6), 5530-5541. doi:10.3168/jds.2018-15687Loor, J. J. (2010). Genomics of metabolic adaptations in the peripartal cow. Animal, 4(7), 1110-1139. doi:10.1017/s1751731110000960Loor, J. J., Bertoni, G., Hosseini, A., Roche, J. R., & Trevisi, E. (2013). Functional welfare – using biochemical and molecular technologies to understand better the welfare state of peripartal dairy cattle. Animal Production Science, 53(9), 931. doi:10.1071/an12344Loor, J. J., Bionaz, M., & Drackley, J. K. (2013). Systems Physiology in Dairy Cattle: Nutritional Genomics and Beyond. Annual Review of Animal Biosciences, 1(1), 365-392. doi:10.1146/annurev-animal-031412-103728Lopreiato, V., Minuti, A., Trimboli, F., Britti, D., Morittu, V. M., Cappelli, F. P., … Trevisi, E. (2019). Immunometabolic status and productive performance differences between periparturient Simmental and Holstein dairy cows in response to pegbovigrastim. Journal of Dairy Science, 102(10), 9312-9327. doi:10.3168/jds.2019-16323Lu, S. C. (2009). Regulation of glutathione synthesis. Molecular Aspects of Medicine, 30(1-2), 42-59. doi:10.1016/j.mam.2008.05.005Ma, Q. (2013). Role of Nrf2 in Oxidative Stress and Toxicity. Annual Review of Pharmacology and Toxicology, 53(1), 401-426. doi:10.1146/annurev-pharmtox-011112-140320Ma, Y. F., Wu, Z. H., Gao, M., & Loor, J. J. (2018). Nuclear factor erythroid 2-related factor 2 antioxidant response element pathways protect bovine mammary epithelial cells against H2O2-induced oxidative damage in vitro. Journal of Dairy Science, 101(6), 5329-5344. doi:10.3168/jds.2017-14128Ma, Y. F., Zhao, L., Coleman, D. N., Gao, M., & Loor, J. J. (2019). Tea polyphenols protect bovine mammary epithelial cells from hydrogen peroxide-induced oxidative damage in vitro by activating NFE2L2/HMOX1 pathways. Journal of Dairy Science, 102(2), 1658-1670. doi:10.3168/jds.2018-15047Newman, A. W., Miller, A., Leal Yepes, F. A., Bitsko, E., Nydam, D., & Mann, S. (2019). The effect of the transition period and postpartum body weight loss on macrophage infiltrates in bovine subcutaneous adipose tissue. Journal of Dairy Science, 102(2), 1693-1701. doi:10.3168/jds.2018-15362Onaran, İ., Güven, G., Ozaydin, A., & Ulutin, T. (2001). The influence of GSTM1 null genotype on susceptibility to in vitro oxidative stress. Toxicology, 157(3), 195-205. doi:10.1016/s0300-483x(00)00358-9Osorio, J. S., Ji, P., Drackley, J. K., Luchini, D., & Loor, J. J. (2014). Smartamine M and MetaSmart supplementation during the peripartal period alter hepatic expression of gene networks in 1-carbon metabolism, inflammation, oxidative stress, and the growth hormone–insulin-like growth factor 1 axis pathways. Journal of Dairy Science, 97(12), 7451-7464. doi:10.3168/jds.2014-8680Östh, M., Öst, A., Kjolhede, P., & Strålfors, P. (2014). The Concentration of β-Carotene in Human Adipocytes, but Not the Whole-Body Adipocyte Stores, Is Reduced in Obesity. PLoS ONE, 9(1), e85610. doi:10.1371/journal.pone.0085610Pires, J. A. A., Delavaud, C., Faulconnier, Y., Pomiès, D., & Chilliard, Y. (2013). Effects of body condition score at calving on indicators of fat and protein mobilization of periparturient Holstein-Friesian cows. Journal of Dairy Science, 96(10), 6423-6439. doi:10.3168/jds.2013-6801Ray, P. D., Huang, B.-W., & Tsuji, Y. (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular Signalling, 24(5), 981-990. doi:10.1016/j.cellsig.2012.01.008Reid, I. M., Roberts, C. J., Treacher, R. J., & Williams, L. A. (1986). Effect of body condition at calving on tissue mobilization, development of fatty liver and blood chemistry of dairy cows. Animal Science, 43(1), 7-15. doi:10.1017/s0003356100018298Reynolds, C. K., Aikman, P. C., Lupoli, B., Humphries, D. J., & Beever, D. E. (2003). Splanchnic Metabolism of Dairy Cows During the Transition From Late Gestation Through Early Lactation. Journal of Dairy Science, 86(4), 1201-1217. doi:10.3168/jds.s0022-0302(03)73704-7Rocco, S. M., & McNamara, J. P. (2013). Regulation of bovine adipose tissue metabolism during lactation. 7. Metabolism and gene expression as a function of genetic merit and dietary energy intake. Journal of Dairy Science, 96(5), 3108-3119. doi:10.3168/jds.2012-6097Roche, J. R., Friggens, N. C., Kay, J. K., Fisher, M. W., Stafford, K. J., & Berry, D. P. (2009). Invited review: Body condition score and its association with dairy cow productivity, health, and welfare. Journal of Dairy Science, 92(12), 5769-5801. doi:10.3168/jds.2009-2431Roche, J. R., Kay, J. K., Friggens, N. C., Loor, J. J., & Berry, D. P. (2013). Assessing and Managing Body Condition Score for the Prevention of Metabolic Disease in Dairy Cows. Veterinary Clinics of North America: Food Animal Practice, 29(2), 323-336. doi:10.1016/j.cvfa.2013.03.003Schneider, K. S., & Chan, J. Y. (2013). Emerging Role of Nrf2 in Adipocytes and Adipose Biology. Advances in Nutrition, 4(1), 62-66. doi:10.3945/an.112.003103Seo, H.-A., & Lee, I.-K. (2013). The Role of Nrf2: Adipocyte Differentiation, Obesity, and Insulin Resistance. Oxidative Medicine and Cellular Longevity, 2013, 1-7. doi:10.1155/2013/184598Sordillo, L. M., & Raphael, W. (2013). Significance of Metabolic Stress, Lipid Mobilization, and Inflammation on Transition Cow Disorders. Veterinary Clinics of North America: Food Animal Practice, 29(2), 267-278. doi:10.1016/j.cvfa.2013.03.002Spears, J. W., & Weiss, W. P. (2008). Role of antioxidants and trace elements in health and immunity of transition dairy cows. The Veterinary Journal, 176(1), 70-76. doi:10.1016/j.tvjl.2007.12.015Sun, X., Li, X., Jia, H., Loor, J. J., Bucktrout, R., Xu, Q., … Li, X. (2019). Effect of heat-shock protein B7 on oxidative stress in adipocytes from preruminant calves. Journal of Dairy Science, 102(6), 5673-5685. doi:10.3168/jds.2018-15726Surmi, B. K., & Hasty, A. H. (2010). The role of chemokines in recruitment of immune cells to the artery wall and adipose tissue. Vascular Pharmacology, 52(1-2), 27-36. doi:10.1016/j.vph.2009.12.004Suzuki, T., & Yamamoto, M. (2017). Stress-sensing mechanisms and the physiological roles of the Keap1–Nrf2 system during cellular stress. Journal of Biological Chemistry, 292(41), 16817-16824. doi:10.1074/jbc.r117.800169Tourniaire, F., Gouranton, E., von Lintig, J., Keijer, J., Luisa Bonet, M., Amengual, J., … Landrier, J.-F. (2009). β-Carotene conversion products and their effects on adipose tissue. Genes & Nutrition, 4(3), 179-187. doi:10.1007/s12263-009-0128-3Treacher, R. J., Reid, I. M., & Roberts, C. J. (1986). Effect of body condition at calving on the health and performance of dairy cows. Animal Science, 43(1), 1-6. doi:10.1017/s0003356100018286Trevisi, E., Bertoni, G., Lombardelli, R., & Minuti, A. (2013). Relation of inflammation and liver function with the plasma cortisol response to adrenocorticotropin in early lactating dairy cows. Journal of Dairy Science, 96(9), 5712-5722. doi:10.3168/jds.2012-6375Vailati-Riboni, M., Farina, G., Batistel, F., Heiser, A., Mitchell, M. D., Crookenden, M. A., … Loor, J. J. (2017). Far-off and close-up dry matter intake modulate indicators of immunometabolic adaptations to lactation in subcutaneous adipose tissue of pasture-based transition dairy cows. Journal of Dairy Science, 100(3), 2334-2350. doi:10.3168/jds.2016-11790Vailati-Riboni, M., Kanwal, M., Bulgari, O., Meier, S., Priest, N. V., Burke, C. R., … Loor, J. J. (2016). Body condition score and plane of nutrition prepartum affect adipose tissue transcriptome regulators of metabolism and inflammation in grazing dairy cows during the transition period. Journal of Dairy Science, 99(1), 758-770. doi:10.3168/jds.2015-10046Vailati Riboni, M., Meier, S., Priest, N. V., Burke, C. R., Kay, J. K., McDougall, S., … Loor, J. J. (2015). Adipose and liver gene expression profiles in response to treatment with a nonsteroidal antiinflammatory drug after calving in grazing dairy cows. Journal of Dairy Science, 98(5), 3079-3085. doi:10.3168/jds.2014-8579Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, 39(1), 44-84. doi:10.1016/j.biocel.2006.07.001Wu, G., Fang, Y.-Z., Yang, S., Lupton, J. R., & Turner, N. D. (2004). Glutathione Metabolism and Its Implications for Health. The Journal of Nutrition, 134(3), 489-492. doi:10.1093/jn/134.3.489Xu, Q., Jia, H., Ma, L., Liu, G., Xu, C., Li, Y., … Li, X. (2019). All-trans retinoic acid inhibits lipopolysaccharide-induced inflammatory responses in bovine adipocytes via TGFβ1/Smad3 signaling pathway. BMC Veterinary Research, 15(1). doi:10.1186/s12917-019-1791-2Zachu

    Giant magnetoresistance of multiwall carbon nanotubes: modeling the tube/ferromagnetic-electrode burying contact

    Full text link
    We report on the giant magnetoresistance (GMR) of multiwall carbon nanotubes with ultra small diameters. In particular, we consider the effect of the inter-wall interactions and the lead/nanotube coupling. Comparative studies have been performed to show that in the case when all walls are well coupled to the electrodes, the so-called inverse GMR can appear. The tendency towards a negative GMR depends on the inter-wall interaction and on the nanotube le ngth. If, however, the inner nanotubes are out of contact with one of the electrodes, the GMR remains positive even for relatively strong inter-wall interactions regardless of the outer nanotube length. These results shed additional light on recently reported experimental data, where an inverse GMR was found in some multiwall carbon nanotube samples.Comment: 5 pages, 5 figure

    A novel hybrid algorithm for mean-CVaR portfolio selection with real-world constraints

    Get PDF
    In this paper, we employ the Conditional Value at Risk (CVaR) to measure the portfolio risk, and propose a mean-CVaR portfolio selection model. In addition, some real-world constraints are considered. The constructed model is a non-linear discrete optimization problem and difficult to solve by the classic optimization techniques. A novel hybrid algorithm based particle swarm optimization (PSO) and artificial bee colony (ABC) is designed for this problem. The hybrid algorithm introduces the ABC operator into PSO. A numerical example is given to illustrate the modeling idea of the paper and the effectiveness of the proposed hybrid algorithm

    Evidence for Shape Co-existence at medium spin in 76Rb

    Full text link
    Four previously known rotational bands in 76Rb have been extended to moderate spins using the Gammasphere and Microball gamma ray and charged particle detector arrays and the 40Ca(40Ca,3pn) reaction at a beam energy of 165 MeV. The properties of two of the negative-parity bands can only readily be interpreted in terms of the highly successful Cranked Nilsson-Strutinsky model calculations if they have the same configuration in terms of the number of g9/2 particles, but they result from different nuclear shapes (one near-oblate and the other near-prolate). These data appear to constitute a unique example of shape co-existing structures at medium spins.Comment: Accepted for publication in Physics Letters

    Theory of Current and Shot Noise Spectroscopy in Single-Molecular Quantum Dots with Phonon Mode

    Full text link
    Using the Keldysh nonequilibrium Green function technique, we study the current and shot noise spectroscopy of a single molecular quantum dot coupled to a local phonon mode. It is found that in the presence of electron-phonon coupling, in addition to the resonant peak associated with the single level of the dot, satellite peaks with the separation set by the frequency of phonon mode appear in the differential conductance. In the ``single level'' resonant tunneling region, the differential shot noise power exhibit two split peaks. However, only single peaks show up in the ``phonon assisted'' resonant-tunneling region. An experimental setup to test these predictions is also proposed.Comment: 5 pages, 3 eps figures embedde
    corecore