15 research outputs found
Effects of Boundary Conditions on Single-File Pedestrian Flow
In this paper we investigate effects of boundary conditions on one
dimensional pedestrian flow which involves purely longitudinal interactions.
Qualitatively, stop-and-go waves are observed under closed boundary condition
and dissolve when the boundary is open. To get more detailed information the
fundamental diagrams of the open and closed systems are compared using
Voronoi-based measurement method. Higher maximal specific flow is observed from
the pedestrian movement at open boundary condition
Multiscale Simulation of Pedestrians for Faster Than Real Time Modeling in Large Events
The Hermes project [1] demonstrated the usefulness of on site faster than real time simulations of probable evacuation scenarios for security personnel. However, the hardware needed was prohibitively expensive [2]. The present paper shows that a multiscale approach can perform the simulation in a fraction of time without loss of useful information. The main problem is the correct passing of agents from a coarse scale model to a fine scale model, here from a CA model to a force based model. This will be achieved by inserting agents into the force based model at positions and speeds optimized for smooth walking either by a priori information or using Voronoi cells. Connecting a Queue model to a continuous model has already been done successfully [3].We also show that a slightly modified CA method can address the problem, too, at even less computational cost, with some possible loss of accuracy