129 research outputs found

    A Semi-automatic Search for Giant Radio Galaxy Candidates and their Radio-Optical Follow-up

    Full text link
    We present results of a search for giant radio galaxies (GRGs) with a projected largest linear size in excess of 1 Mpc. We designed a computational algorithm to identify contiguous emission regions, large and elongated enough to serve as GRG candidates, and applied it to the entire 1.4-GHz NRAO VLA Sky survey (NVSS). In a subsequent visual inspection of 1000 such regions we discovered 15 new GRGs, as well as many other candidate GRGs, some of them previously reported, for which no redshift was known. Our follow-up spectroscopy of 25 of the brighter hosts using two 2.1-m telescopes in Mexico, and four fainter hosts with the 10.4-m Gran Telescopio Canarias (GTC), yielded another 24 GRGs. We also obtained higher-resolution radio images with the Karl G. Jansky Very Large Array for GRG candidates with inconclusive radio structures in NVSS.Comment: 4 pages, 1 figure, to appear in the proceedings of The Universe of Digital Sky Surveys, Naples, Italy, Nov 25-28, 2014; Astrophysics and Space Science, eds. N.R. Napolitano et a

    Sub-arcsecond radio and optical observations of the likely counterpart to the gamma-ray source 2FGL J2056.7+4939

    Full text link
    We have searched and reviewed all multi- wavelength data available for the region towards the gamma-ray source 2FGL J2056.7+4939 in order to con- strain its possible counterpart at lower energies. As a result, only a point-like optical/infrared source with flat-spectrum radio emission is found to be consistent with all X-ray and gamma-ray error circles. Its struc- ture is marginally resolved at radio wavelengths at the sub-arcsecond level. An extragalactic scenario appears to be the most likely interpretation for this object.Comment: 5 pages, 3 figures, 1 tabl

    A time-dependent perturbative analysis for a quantum particle in a cloud chamber

    Full text link
    We consider a simple model of a cloud chamber consisting of a test particle (the alpha-particle) interacting with two other particles (the atoms of the vapour) subject to attractive potentials centered in a1,a2R3a_1, a_2 \in \mathbb{R}^3. At time zero the alpha-particle is described by an outgoing spherical wave centered in the origin and the atoms are in their ground state. We show that, under suitable assumptions on the physical parameters of the system and up to second order in perturbation theory, the probability that both atoms are ionized is negligible unless a2a_2 lies on the line joining the origin with a1a_1. The work is a fully time-dependent version of the original analysis proposed by Mott in 1929.Comment: 23 page

    On the nature of the unidentified X-ray/gamma-ray sources IGR J18027-1455 and IGR J21247+5058

    Full text link
    We present a multiwavelength study of the environment of the unidentified X-ray/gamma-ray sources IGR J18027-1455 and IGR J21247+5058, recently discovered by the IBIS/ISGRI instrument, onboard the INTEGRAL satellite. The main properties of the sources found inside their position error circles, give us clues about the nature of these high-energy sources.Comment: 8 pages, 4 figures, Proceedings of the Conference "The Multiwavelength Approach to Unidentified Sources", to appear in the journal Astrophysics and Space Scienc

    Soft-core baryon-baryon potentials for the complete baryon octet

    Get PDF
    SU(3) symmetry relations on the recently constructed hyperon-nucleon potentials are used to develop potential models for all possible baryon-baryon interaction channels. The main focus is on the interaction channels with total strangeness S=-2, -3, and -4, for which no experimental data exist yet. The potential models for these channels are based on SU(3) extensions of potential models for the S=0 and S=-1 sectors, which are fitted to experimental data. Although the SU(3) symmetry is not taken to be exact, the S=0 and S=-1 sectors still provide the necessary constraints to fix all free parameters. The potentials for the S=-2, -3, and -4 sectors, therefore, do not contain any additional free parameters, which makes them the first models of this kind. Various properties of the potentials are illustrated by giving results for scattering lengths, bound states, and total cross sections.Comment: 22 pages RevTex, 6 postscript figure

    Model study on the photoassociation of a pair of trapped atoms into an ultralong-range molecule

    Full text link
    Using the method of quantum-defect theory, we calculate the ultralong-range molecular vibrational states near the dissociation threshold of a diatomic molecular potential which asymptotically varies as 1/R3-1/R^3. The properties of these states are of considerable interest as they can be formed by photoassociation (PA) of two ground state atoms. The Franck-Condon overlap integrals between the harmonically trapped atom-pair states and the ultralong-range molecular vibrational states are estimated and compared with their values for a pair of untrapped free atoms in the low-energy scattering state. We find that the binding between a pair of ground-state atoms by a harmonic trap has significant effect on the Franck-Condon integrals and thus can be used to influence PA. Trap-induced binding between two ground-state atoms may facilitate coherent PA dynamics between the two atoms and the photoassociated diatomic molecule.Comment: 11 pages, 4 figures, to appear in Phys. Rev. A (September, 2003

    Simulating spin systems on IANUS, an FPGA-based computer

    Get PDF
    We describe the hardwired implementation of algorithms for Monte Carlo simulations of a large class of spin models. We have implemented these algorithms as VHDL codes and we have mapped them onto a dedicated processor based on a large FPGA device. The measured performance on one such processor is comparable to O(100) carefully programmed high-end PCs: it turns out to be even better for some selected spin models. We describe here codes that we are currently executing on the IANUS massively parallel FPGA-based system.Comment: 19 pages, 8 figures; submitted to Computer Physics Communication

    A Statistical Study of Galactic SNRs using the PMN Survey

    Full text link
    The Parkes-MIT-NRAO (PMN) radio survey has been used to generate a quasi all-sky study of Galactic Supernova Remnants (SNRs) at a common frequency of 4.85 GHz. We present flux densities estimated for the sample of 110 Southern Galactic SNRs (up to Dec = - 65 deg.) observed with the Parkes 64-m radio telescope and an additional sample of 54 from the Northern PMN (up to Dec = +64 deg.) survey undertaken with the Green Bank 43-m (20 SNRs) and 91-m (34 SNRs) radio telescopes. Out of this total sample of 164 selected SNRs (representing 71% of the 231 known SNRs in the Green catalogue) we consider 138 to provide reliable estimates of flux density and surface brightness distribution. This sub-sample represents those SNRs which fall within carefully chosen selection criteria which minimises the effects of the known problems in establishing reliable fluxes from the PMN survey data. Our selection criteria are based on a judicious restriction of source angular size and telescope beam together with careful evaluation of fluxes on a case by case basis. This gives confidence in the newly derived PMN fluxes when the selection criteria are respected. We find a sharp drop off in the flux densities for Galactic SNRs beyond 4 Jy and then a fairly flat distribution from 5-9 Jy, a slight decline and a further flat distribution from 9-20 Jy though the numbers of SNR in each Jy bin are low. We also re-visit the contentious Sigma-D relation to determine a new power law index for a sub-sample of shell type SNRs which yields beta= -2.2 +/- 0.6. This new evaluation of the Sigma-D relation, applied to the restricted sample, provides new distance estimates and their Galactic scale height distribution. We find a peak in the SNR distribution between 7-11 kpc with most restricted to +/- 100 pc Galactic scale height.Comment: 14 pages, 7 figures. Accepted for publishing in Astrophysics and Space Scienc

    Franck-Condon Effect in Central Spin System

    Full text link
    We study the quantum transitions of a central spin surrounded by a collective-spin environment. It is found that the influence of the environmental spins on the absorption spectrum of the central spin can be explained with the analog of the Franck-Condon (FC) effect in conventional electron-phonon interaction system. Here, the collective spins of the environment behave as the vibrational mode, which makes the electron to be transitioned mainly with the so-called "vertical transitions" in the conventional FC effect. The "vertical transition" for the central spin in the spin environment manifests as, the certain collective spin states of the environment is favored, which corresponds to the minimal change in the average of the total spin angular momentum.Comment: 8 pages, 8 figure
    corecore