89 research outputs found

    Blue laser cooling transitions in Tm I

    Full text link
    We have studied possible candidates for laser cooling transitions in 169^{169}Tm in the spectral region 410 -- 420 nm. By means of saturation absorption spectroscopy we have measured the hyperfine structure and rates of two nearly closed cycling transitions from the ground state 4f136s2(2F0)(Jg=7/2)4\textrm{f}^{13}6\textrm{s}^2(^2\textrm{F}_0)(J_g=7/2) to upper states 4f12(3H5)5d3/26s2(Je=9/2)4\textrm{f}^{12}(^3\textrm{H}_5)5\textrm{d}_{3/2}6\textrm{s}^2(J_e=9/2) at 410.6 nm and 4f12(3F4)5d5/26s2(Je=9/2)4\textrm{f}^{12}(^3\textrm{F}_4)5\textrm{d}_{5/2}6\textrm{s}^2(J_e=9/2) at 420.4 nm and evaluated the life times of the excited levels as 15.9(8) ns and 48(6) ns respectively. Decay rates from these levels to neighboring opposite-parity levels are evaluated by means of Hartree-Fock calculations. We conclude, that the strong transition at 410.6 nm has an optical leak rate of less then 2⋅10−52\cdot10^{-5} and can be used for efficient laser cooling of 169^{169}Tm from a thermal atomic beam. The hyperfine structure of two other even-parity levels which can be excited from the ground state at 409.5 nm and 418.9 nm is also measured by the same technique. In addition we give a calculated value of 7(2)7(2) s−1^{-1} for the rate of magnetic-dipole transition at 1.14 ÎŒ\mum between the fine structure levels (Jg=7/2)↔(Jgâ€Č=5/2)(J_g=7/2)\leftrightarrow(J'_g=5/2) of the ground state which can be considered as a candidate for applications in atomic clocks.Comment: 8 pages, 5 figure

    Characterization of high finesse mirrors: loss, phase shifts and mode structure in an optical cavity

    Get PDF
    An extensive characterization of high finesse optical cavities used in cavity QED experiments is described. Different techniques in the measurement of the loss and phase shifts associated with the mirror coatings are discussed and their agreement shown. Issues of cavity field mode structure supported by the dielectric coatings are related to our effort to achieve the strongest possible coupling between an atom and the cavity.Comment: 8 pages, 4 figure

    Deceleration and trapping of heavy diatomic molecules using a ring-decelerator

    Full text link
    We present an analysis of the deceleration and trapping of heavy diatomic molecules in low-field seeking states by a moving electric potential. This moving potential is created by a 'ring-decelerator', which consists of a series of ring-shaped electrodes to which oscillating high voltages are applied. Particle trajectory simulations have been used to analyze the deceleration and trapping efficiency for a group of molecules that is of special interest for precision measurements of fundamental discrete symmetries. For the typical case of the SrF molecule in the (N,M) = (2, 0) state, the ring-decelerator is shown to outperform traditional and alternate-gradient Stark decelerators by at least an order of magnitude. If further cooled by a stage of laser cooling, the decelerated molecules allow for a sensitivity gain in a parity violation measurement, compared to a cryogenic molecular beam experiment, of almost two orders of magnitude

    SARS-CoV-2-specific nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by subsequent vaccination

    Get PDF
    BACKGROUND: Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced. METHODS: In this follow up study, plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data. FINDINGS: Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months (p < 0.0001). Nasal and plasma anti-S IgG remained elevated for at least 12 months (p < 0.0001) with plasma neutralising titres that were raised against all variants compared to controls (p < 0.0001). Of 323 with complete data, 307 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal (1.46-fold change after 10 months, p = 0.011) and the median remained below the positive threshold determined by pre-pandemic controls. Samples 12 months after admission showed no association between nasal IgA and plasma IgG anti-S responses (R = 0.05, p = 0.18), indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination. INTERPRETATION: The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity. FUNDING: This study has been supported by ISARIC4C and PHOSP-COVID consortia. ISARIC4C is supported by grants from the National Institute for Health and Care Research and the Medical Research Council. Liverpool Experimental Cancer Medicine Centre provided infrastructure support for this research. The PHOSP-COVD study is jointly funded by UK Research and Innovation and National Institute of Health and Care Research. The funders were not involved in the study design, interpretation of data or the writing of this manuscript

    Large-scale phenotyping of patients with long COVID post-hospitalization reveals mechanistic subtypes of disease

    Get PDF
    One in ten severe acute respiratory syndrome coronavirus 2 infections result in prolonged symptoms termed long coronavirus disease (COVID), yet disease phenotypes and mechanisms are poorly understood1. Here we profiled 368 plasma proteins in 657 participants ≄3 months following hospitalization. Of these, 426 had at least one long COVID symptom and 233 had fully recovered. Elevated markers of myeloid inflammation and complement activation were associated with long COVID. IL-1R2, MATN2 and COLEC12 were associated with cardiorespiratory symptoms, fatigue and anxiety/depression; MATN2, CSF3 and C1QA were elevated in gastrointestinal symptoms and C1QA was elevated in cognitive impairment. Additional markers of alterations in nerve tissue repair (SPON-1 and NFASC) were elevated in those with cognitive impairment and SCG3, suggestive of brain–gut axis disturbance, was elevated in gastrointestinal symptoms. Severe acute respiratory syndrome coronavirus 2-specific immunoglobulin G (IgG) was persistently elevated in some individuals with long COVID, but virus was not detected in sputum. Analysis of inflammatory markers in nasal fluids showed no association with symptoms. Our study aimed to understand inflammatory processes that underlie long COVID and was not designed for biomarker discovery. Our findings suggest that specific inflammatory pathways related to tissue damage are implicated in subtypes of long COVID, which might be targeted in future therapeutic trials

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Progressive localisation of strain during the evolution of a normal-fault population

    No full text
    Journal of Structural Geology, v. 24, n. 8, p. 1215-1231, 2002. http://dx.doi.org/10.1016/S0191-8141(01)00104-3International audienc

    Geometric and kinematic controls on the internal structure of a large normal fault in massive limestones : the Maghlaq Fault, Malta

    Get PDF
    The Maghlaq Fault is a large, left-stepping normal fault (displacement >210 m) cutting the Oligo-Miocene pre- to syn-rift carbonates of SW Malta. Two principal slip zones separate the deformed rocks of the fault zone from the undeformed wall rocks. Fault rocks derived from fully lithified, pre- to early syn-rift sediments comprise relatively continuous fine-grained veneers of cataclasite and localised fault-bound lenses of wall rock, occurring over a range of scales, which are commonly brecciated. The lenses result from the linkage of slip surfaces, the inclusion of asperities and the formation of Riedel shears within the fault zone. In contrast, fault rock incorporated from unlithified syn-rift sediments comprise relatively continuous veils of rock that deformed in a ductile manner. Anomalously thick parts of the fault zone with highly complex structure and content are associated with breached relay zones, branch-lines and bends; these structures represent progressive stages of fault segment linkage. The progressive evolution and bypassing of fault zone complexities to form a smoother and more continuous active fault surface, results in complex fault rock distributions within the fault zone. Segment linkage structures have high fracture densities which combined with their significant vertical extents suggest they are potentially important up-fault fluid flow conduits.Irish Research Council for Science, Engineering and TechnologyENI Exploration and Production Divisio

    Hanging wall fault kinematics and footwall collapse in listric growth fault systems

    No full text
    We describe the structure of a listric growth fault system from SE Asia, using high-resolution, 3-D seismic data. The fault system shows systematic changes in geometry and kinematics that are sympathetic with along-strike changes in the structure of the bounding fault. Where the position of the bounding fault remained fixed, there is an overall landward decrease in the age of the hanging wall growth faults. Along strike, three phases of footwall collapse caused by the active bounding fault stepping back into the footwall block were responsible for the punctuated, stepwise, landward migration of the rollover hinge and associated hanging wall growth faults during extension. The migration of these hanging wall structures is similar to that predicted by simple analogue models with fixed detachment surfaces: care should therefore be taken in defining kinematic models in areas where the geometry of the bounding fault is either poorly defined or unknown
    • 

    corecore