11 research outputs found

    Using multimedia for patient information--a program about nocturnal enuresis

    No full text
    To identify the information needs of children with nocturnal enuresis, and to design, produce and evaluate an interactive computer program to provide this information

    El color en la arquitectura de Bruno Taut

    No full text
    La vinculación del arquitecto Bruno Taut con los ideales que albergaba el movimiento para la reforma de la vida, desarrollado en la Alemania de Guillermo II como contraposición a las consecuencias del enorme desarrollo económico e industrial, se materializó, esencialmente, en la proyección de ciudades jardín y Siedlungen, en las que se refuerza el principio de cultura comunitaria. Esta práctica constructiva en el ámbito de la vivienda es expresión de su pensamiento social e intenta hacer efectiva la idea de una “nueva construcción” acorde con las necesidades de la sociedad moderna

    Australian Jurassic sedimentary and fossil successions: current work and future prospects for marine and non-marine correlation

    No full text

    Exoplanetary Atmospheres—Chemistry, Formation Conditions, and Habitability

    No full text
    Characterizing the atmospheres of extrasolar planets is the new frontier in exoplanetary science. The last two decades of exoplanet discoveries have revealed that exoplanets are very common and extremely diverse in their orbital and bulk properties. We now enter a new era as we begin to investigate the chemical diversity of exoplanets, their atmospheric and interior processes, and their formation conditions. Recent developments in the field have led to unprecedented advancements in our understanding of atmospheric chemistry of exoplanets and the implications for their formation conditions. We review these developments in the present work. We review in detail the theory of atmospheric chemistry in all classes of exoplanets discovered to date, from highly irradiated gas giants, ice giants, and super-Earths, to directly imaged giant planets at large orbital separations. We then review the observational detections of chemical species in exoplanetary atmospheres of these various types using different methods, including transit spectroscopy, Doppler spectroscopy, and direct imaging. In addition to chemical detections, we discuss the advances in determining chemical abundances in these atmospheres and how such abundances are being used to constrain exoplanetary formation conditions and migration mechanisms. Finally, we review recent theoretical work on the atmospheres of habitable exoplanets, followed by a discussion of future outlook of the field.M. Agúndez acknowledges funding support from Spanish MINECO through grants CSD2009-00038, AYA2009-07304, and AYA2012-32032 and from the European Research Council (ERC Grant 610256: NANOCOSMOS). J. Moses thanks the NASA Exoplanet Research program NNX15AN82G for support. Y. Hu is supported by the National Natural Science Foundation of China 435 (NSFC) under grants 41375072 and 41530423

    BioTIME : a database of biodiversity time series for the Anthropocene

    No full text
    Motivation: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene. Main types of variables included: The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record. Spatial location and grain: BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km (158 cm) to 100 km (1,000,000,000,000 cm). Time period and grain: BioTIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year. Major taxa and level of measurement: BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates. Software format:.csv and.SQL
    corecore