191 research outputs found

    Simultaneous temperature and humidity measurements in a mechanical ventilator using an optical fibre sensor

    Get PDF
    An optical fibre sensor for simultaneous temperature and humidity measurements consisting of one fibre Bragg grating (FBG) to measure temperature and a mesoporous film of bilayers of Poly(allylamine hydrochloride)(PAH) and silica (SiO2) nanoparticles deposited onto the tip of the same fibre to measure humidity is reported. The hygroscopic film was created using the layer-by-layer (LbL) method and the optical reflection spectra were measured up to a maximum of 23 bilayers. The temperature sensitivity of the FBG was 10 pm/°C while the sensitivity to humidity was (-1.4x10-12 W / %RH) using 23 bilayers. The developed sensor was tested in the mechanical ventilator and temperature and humidity of the delivered artificial air was simultaneously measured. Once calibrated, the optical fibre sensor has the potential to control the absolute humidity as an essential part of critical respiratory care. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    Lognormal Properties of SGR 1806-20 and Implications for Other SGR Sources

    Full text link
    The time interval between successive bursts from SGR 1806-20 and the intensity of these bursts are both consistent with lognormal distributions. Monte Carlo simulations of lognormal burst models with a range of distribution parameters have been investigated. The main conclusions are that while most sources like SGR 1806-20 should be detected in a time interval of 25 years, sources with means about 100 times longer have a probability of about 5\% of being detected in the same interval. A new breed of experiments that operate for long periods are required to search for sources with mean recurrence intervals much longer than SGR 1806-20.Comment: 4 pages, latex with seperate file containing 2 uuencoded, gzip'ed, tarred, .eps figures. Replaced with file that does not use kluwer.sty to allow automatic postscript generation. To appear in proceedings of ESLAB 2

    Characterization and use of a fiber optic sensor based on PAH/SiO2 film for humidity sensing in ventilator care equipment

    Get PDF
    Objective: To develop a compact probe that can be used to monitor humidity in ventilator care equipment. A mesoporous film of alternate layers of Poly(allylamine hydrochloride) (PAH) and silica (SiO2) nanoparticles (bilayers), deposited onto an optical fibre was used. The sensing film behaves as a Fabry-Perot cavity of low-finesse where the absorption of water vapour changes the optical thickness and produces a change in reflection proportional to humidity. Methods: The mesoporous film was deposited upon the cleaved tip of an optical fibre using the layer-by-layer method. The sensor was calibrated in a bench model against a commercially available capacitive sensor. The sensitivity and response time were assessed in the range from 5 % relative humidity (RH) to 95 %RH for different numbers of bilayers up to a maximum of nine. Results: The sensitivity increases with the number of bilayers deposited; sensitivity of 2.28 mV/%RH was obtained for nine bilayers. The time constant of the response was 1.13 s ± 0.30 s which is faster than the commercial device (measured as 158 s). After calibration, the optical fibre humidity sensor was utilised in a bench top study employing a mechanical ventilator. The fast response time enabled changes in humidity in individual breaths to be resolved. Conclusion: Optical fibre sensors have the potential to be used to monitor breath to breath humidity during ventilator care. Significance: Control of humidity is an essential part of critical respiratory care and the developed sensor provides a sensitive, compact and fast method of humidity monitoring

    Single-crossover dynamics: finite versus infinite populations

    Full text link
    Populations evolving under the joint influence of recombination and resampling (traditionally known as genetic drift) are investigated. First, we summarise and adapt a deterministic approach, as valid for infinite populations, which assumes continuous time and single crossover events. The corresponding nonlinear system of differential equations permits a closed solution, both in terms of the type frequencies and via linkage disequilibria of all orders. To include stochastic effects, we then consider the corresponding finite-population model, the Moran model with single crossovers, and examine it both analytically and by means of simulations. Particular emphasis is on the connection with the deterministic solution. If there is only recombination and every pair of recombined offspring replaces their pair of parents (i.e., there is no resampling), then the {\em expected} type frequencies in the finite population, of arbitrary size, equal the type frequencies in the infinite population. If resampling is included, the stochastic process converges, in the infinite-population limit, to the deterministic dynamics, which turns out to be a good approximation already for populations of moderate size.Comment: 21 pages, 4 figure

    Primordialists and Constructionists: a typology of theories of religion

    Get PDF
    This article adopts categories from nationalism theory to classify theories of religion. Primordialist explanations are grounded in evolutionary psychology and emphasize the innate human demand for religion. Primordialists predict that religion does not decline in the modern era but will endure in perpetuity. Constructionist theories argue that religious demand is a human construct. Modernity initially energizes religion, but subsequently undermines it. Unpacking these ideal types is necessary in order to describe actual theorists of religion. Three distinctions within primordialism and constructionism are relevant. Namely those distinguishing: a) materialist from symbolist forms of constructionism; b) theories of origins from those pertaining to the reproduction of religion; and c) within reproduction, between theories of religious persistence and secularization. This typology helps to make sense of theories of religion by classifying them on the basis of their causal mechanisms, chronology and effects. In so doing, it opens up new sightlines for theory and research

    Expedition 361 summary

    Get PDF
    International Ocean Discovery Program Expedition 361 drilled six sites on the southeast African margin (southwest Indian Ocean) and in the Indian-Atlantic Ocean gateway, from 30 January to 31 March 2016. In total, 5175 m of core was recovered, with an average recovery of 102%, during 29.7 days of on-site operations. The sites, situated in the Mozambique Channel at locations directly influenced by discharge from the Zambezi and Limpopo River catchments, the Natal Valley, the Agulhas Plateau, and Cape Basin, were targeted to reconstruct the history of the greater Agulhas Current system over the past ~5 My. The Agulhas Current is the strongest western boundary current in the Southern Hemisphere, transporting some 70 Sv of warm, saline surface water from the tropical Indian Ocean along the East African margin to the tip of Africa. Exchanges of heat and moisture with the atmosphere influence southern African climates, including individual weather systems such as extratropical cyclone formation in the region and rainfall patterns. Recent ocean model and paleoceanographic data further point at a potential role of the Agulhas Current in controlling the strength and mode of the Atlantic Meridional Overturning Circulation (AMOC) during the Late Pleistocene. Spillage of saline Agulhas water into the South Atlantic stimulates buoyancy anomalies that may influence basin-wide AMOC, with implications for convective activity in the North Atlantic and global climate change. The main objectives of the expedition were to establish the role of the Agulhas Current in climatic changes during the Pliocene–Pleistocene, specifically to document the dynamics of the Indian-Atlantic Ocean gateway circulation during this time, to examine the connection of the Agulhas leakage and AMOC, and to address the influence of the Agulhas Current on African terrestrial climates and coincidences with human evolution. Additionally, the expedition set out to fulfill the needs of Ancillary Project Letter number 845, consisting of high-resolution interstitial water sampling to help constrain the temperature and salinity profiles of the ocean during the Last Glacial Maximum. The expedition made major strides toward fulfilling each of these objectives. The recovered sequences allowed generation of complete spliced stratigraphic sections that range from 0 to between ~0.13 and 7 Ma. This sediment will provide decadal- to millennial-scale climatic records that will allow answering the paleoceanographic and paleoclimatic questions set out in the drilling proposal
    • …
    corecore