200 research outputs found
Climate fluctuations and the spring invasion of the North Sea by Calanus finmarchicus
The population of Calanus finmarchicus in the North Sea is replenished each spring by invasion from an overwintering stock located beyond the shelf edge. A combincation of field observations, statistical analysis of Continuous Plankton Recorder (CPR) data, and particle tracking model simulations, was used to investigate the processes involved in the cross-shelf invasion. The results showed that the main source of overwintering animals entering the North Sea in the spring is at depths of greater than 600m in the Faroe Shetland Channel, where concentrations of up to 620m -3 are found in association with the overflow of Norwegian Sea Deep Water (NSDW) across the Iceland Scotland Ridge. The input of this water mass to the Faroe Shetland Channel, and hence the supply of overwintering C. finmarchicus, has declined since the late 1960s due to changes in convective processes in the Greenland Sea. Beginning in February, animals start to emerge from the overwintering state and migrate to the surface waters, where their transport into the North Sea is mainly determined by the incidence of north-westerly winds that have declined since the 1960s. Together, these two factors explain a high proportion of the 30-year trends in spring abundance in the North Sea as measured by the CPR survey. Both the regional winds and the NSDW overflow are connected to the North Atlantic Oscillation Index (NAO), which is an atmospheric climate index, but with different time scales of response. Thus, interannual fluctuations in the NAO can cause immediate changes in the incidence of north-westerly winds without leading to corresponding changes in C. finmarchicus abundance in the North Sea, because the NSDW overflow responds over longer (decadal) time scales
Brain mass estimation by head circumference and body mass methods in neonatal glycaemic modelling and control
Introduction: Hyperglycaemia is a common complication of stress and prematurity in extremely low-birth-weight infants. Model-based insulin therapy protocols have the ability to safely improve glycaemic control for this group. Estimating non-insulin-mediated brain glucose uptake by the central nervous system in these models is typically done using population-based body weight models, which may not be ideal. Method: A head circumference-based model that separately treats small-for-gestational-age (SGA) and appropriate-for-gestational-age (AGA) infants is compared to a body weight model in a retrospective analysis of 48 patients with a median birth weight of 750g and median gestational age of 25 weeks. Estimated brain mass, model-based insulin sensitivity (SI) profiles, and projected glycaemic control outcomes are investigated. SGA infants (5) are also analyzed as a separate cohort. Results: Across the entire cohort, estimated brain mass deviated by a median 10% between models, with a per-patient median difference in SI of 3.5%. For the SGA group, brain mass deviation was 42%, and per-patient SI deviation 13.7%. In virtual trials, 87-93% of recommended insulin rates were equal or slightly reduced (δ<0.16mU/h) under the head circumference method, while glycaemic control outcomes showed little change. Conclusion: The results suggest that body weight methods are not as accurate as head circumference methods. Head circumference-based estimates may offer improved modelling accuracy and a small reduction in insulin administration, particularly for SGA infants. © 2014 Elsevier Ireland Ltd
Model-based insulin-nutrition administration for glycemic control in Malaysian critical care: First pilot trial
© 2018, Springer Science+Business Media Singapore. Stress-induced hyperglycemia is prevalent in critical care, even in patients with no history of diabetes. Control of blood glucose level with tight insulin therapy has been shown to reduce incidences of hyperglycemia leading to reduced mortality and improved clinical outcomes. STAR is a tablet-based glucose control protocol with a specialized user interface into which insulin and nutrition information can be entered and predicted. This research describes the first clinical pilot trial of STAR approach in International Islamic University Hospital, Kuantan, Malaysia. The clinically specified target for blood glucose level is between 4.4 and 8.0 mmol/L. Seven episodes (of 359 h) were recruited based on the need for glucose control. Overall, 43.93% of measurement are in the range of 4.4–8.0 mmol/L band. The blood glucose median is 8.30 [6.32–10.00] mmol/L with only 1 patient having below than 2.22 mmol/L which is the guaranteed minimum risk level. This pilot study shows that STAR protocol is a patient specific approach that provides a good glycemic control in critically ill patients. Nevertheless, its implementation in Malaysian intensive care environments requires modifications and improvements in certain areas
Next-generation, personalised, model-based critical care medicine : a state-of-the art review of in silico virtual patient models, methods, and cohorts, and how to validation them
© 2018 The Author(s). Critical care, like many healthcare areas, is under a dual assault from significantly increasing demographic and economic pressures. Intensive care unit (ICU) patients are highly variable in response to treatment, and increasingly aging populations mean ICUs are under increasing demand and their cohorts are increasingly ill. Equally, patient expectations are growing, while the economic ability to deliver care to all is declining. Better, more productive care is thus the big challenge. One means to that end is personalised care designed to manage the significant inter- and intra-patient variability that makes the ICU patient difficult. Thus, moving from current "one size fits all" protocolised care to adaptive, model-based "one method fits all" personalised care could deliver the required step change in the quality, and simultaneously the productivity and cost, of care. Computer models of human physiology are a unique tool to personalise care, as they can couple clinical data with mathematical methods to create subject-specific models and virtual patients to design new, personalised and more optimal protocols, as well as to guide care in real-time. They rely on identifying time varying patient-specific parameters in the model that capture inter- and intra-patient variability, the difference between patients and the evolution of patient condition. Properly validated, virtual patients represent the real patients, and can be used in silico to test different protocols or interventions, or in real-time to guide care. Hence, the underlying models and methods create the foundation for next generation care, as well as a tool for safely and rapidly developing personalised treatment protocols over large virtual cohorts using virtual trials. This review examines the models and methods used to create virtual patients. Specifically, it presents the models types and structures used and the data required. It then covers how to validate the resulting virtual patients and trials, and how these virtual trials can help design and optimise clinical trial. Links between these models and higher order, more complex physiome models are also discussed. In each section, it explores the progress reported up to date, especially on core ICU therapies in glycemic, circulatory and mechanical ventilation management, where high cost and frequency of occurrence provide a significant opportunity for model-based methods to have measurable clinical and economic impact. The outcomes are readily generalised to other areas of medical care
A Measurement of the Decay Asymmetry Parameters in \Xi_{c}^{0}\to \X^{-}\pi^{+}
Using the CLEO II detector at the Cornell Electron Storage Ring we have
measured the decay asymmetry parameter in the decay . We find , using the world average value of
we obtain . The physically allowed range of a decay
asymmetry parameter is . Our result prefers a negative value:
is at the 90% CL. The central value occupies the
middle of the theoretically expected range but is not yet precise enough to
choose between models.Comment: 10 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLN
Observation of the Charmed Baryon Decays to , , and
We have observed two new decay modes of the charmed baryon into
and using data collected with the
CLEO II detector. We also present the first measurement of the branching
fraction for the previously observed decay mode . The branching fractions for these three modes relative to
are measured to be , , and , respectively.Comment: 12 page uuencoded postscript file, postscript file also available
through http://w4.lns.cornell.edu/public/CLN
Study of the B^0 Semileptonic Decay Spectrum at the Upsilon(4S) Resonance
We have made a first measurement of the lepton momentum spectrum in a sample
of events enriched in neutral B's through a partial reconstruction of B0 -->
D*- l+ nu. This spectrum, measured with 2.38 fb**-1 of data collected at the
Upsilon(4S) resonance by the CLEO II detector, is compared directly to the
inclusive lepton spectrum from all Upsilon(4S) events in the same data set.
These two spectra are consistent with having the same shape above 1.5 GeV/c.
From the two spectra and two other CLEO measurements, we obtain the B0 and B+
semileptonic branching fractions, b0 and b+, their ratio, and the production
ratio f+-/f00 of B+ and B0 pairs at the Upsilon(4S). We report b+/b0=0.950
(+0.117-0.080) +- 0.091, b0 = (10.78 +- 0.60 +- 0.69)%, and b+ = (10.25 +- 0.57
+- 0.65)%. b+/b0 is equivalent to the ratio of charged to neutral B lifetimes,
tau+/tau0.Comment: 14 page, postscript file also available at
http://w4.lns.cornell.edu/public/CLN
Measurements of the Ratios and
Using the CLEO~II detector we measure , and .
We find the vector to pseudoscalar ratio, , which is similar to the
ratio found in non strange decays.Comment: 11 page uuencoded postscript file, postscript file also available
through http://w4.lns.cornell.edu/public/CLN
Radiative Decay Modes of the Meson
Using data recorded by the CLEO-II detector at CESR we have searched for four
radiative decay modes of the meson: ,
, , and . We
obtain 90% CL upper limits on the branching ratios of these modes of , , and
respectively.Comment: 15 page postscript file, postscript file also available through
http://w4.lns.cornell.edu/public/CLN
Measurement of the Mass Splittings between the States
We present new measurements of photon energies and branching fractions for
the radiative transitions: Upsilon(2S)->gamma+chi_b(J=0,1,2). The masses of the
chi_b states are determined from the measured radiative photon energies. The
ratio of mass splittings between the chi_b substates,
r==(M[J=2]-M[J=1])/(M[J=1]-M[J=0]) with M the chi_b mass, provides information
on the nature of the bbbar confining potential. We find
r(1P)=0.54+/-0.02+/-0.02. This value is in conflict with the previous world
average, but more consistent with the theoretical expectation that r(1P)<r(2P);
i.e., that this mass splittings ratio is smaller for the chi_b(1P) triplet than
for the chi_b(2P) triplet.Comment: 11 page postscript file, postscript file also available through
http://w4.lns.cornell.edu/public/CLN
- …