677 research outputs found
Underlying Pairing States in Cuprate Superconductors
In this Letter, we develop a microscopic theory to describe the close
proximity between the insulating antiferromagnetic (AF) order and the d-wave
superconducting (dSC) order in cuprates. We show that the cuprate ground states
form a configuration of coherent pairing states consisting of extended singlet
Cooper pairs and triplet pairs, which can simultaneously describe AF and
dSC orders.Comment: 4 papes, 1 figur
Optical signatures of spin-orbit exciton in bandwidth-controlled Sr2IrO4 epitaxial films via high-concentration Ca and Ba doping
We have investigated the electronic and optical properties of (Sr1-xCax)2IrO4 (x=0-0.375) and (Sr1-yBay)2IrO4 (y=0-0.375) epitaxial thin films, in which the bandwidth is systematically tuned via chemical substitutions of Sr ions by Ca and Ba. Transport measurements indicate that the thin-film series exhibits insulating behavior, similar to the Jeff=1/2 spin-orbit Mott insulator Sr2IrO4. As the average A-site ionic radius increases from (Sr1-xCax)2IrO4 to (Sr1-yBay)2IrO4, optical conductivity spectra in the near-infrared region shift to lower energies, which cannot be explained by the simple picture of well-separated Jeff=1/2 and Jeff=3/2 bands. We suggest that the two-peak-like optical conductivity spectra of the layered iridates originates from the overlap between the optically forbidden spin-orbit exciton and the intersite optical transitions within the Jeff=1/2 band. Our experimental results are consistent with this interpretation as implemented by a multiorbital Hubbard model calculation: namely, incorporating a strong Fano-like coupling between the spin-orbit exciton and intersite d-d transitions within the Jeff=1/2 band. ? 2017 American Physical Society.113Ysciescopu
On the Entropy of a Quantum Field in the Rotating Black Holes
By using the brick wall method we calculate the free energy and the entropy
of the scalar field in the rotating black holes. As one approaches the
stationary limit surface rather than the event horizon in comoving frame, those
become divergent. Only when the field is comoving with the black hole (i.e.
) those become divergent at the event horizon. In the
Hartle-Hawking state the leading terms of the entropy are , where is the cut-off in the radial coordnate near the
horizon. In term of the proper distance cut-off it is written as . The origin of the divergence is that the density of state
on the stationary surface and beyond it diverges.Comment: Latex, 23 pages, 7 eps figure
Sub-wavelength lithography over extended areas
We demonstrate a systematic approach to sub-wavelength resolution
lithographic image formation on films covering areas larger than a wavelength
squared. For example, it is possible to make a lithographic pattern with a
feature size resolution of by using a particular -photon, multi-mode entangled state, where , and banks of birefringent
plates. By preparing a statistically mixed such a state one can form any pixel
pattern on a pixel grid occupying a square
with a side of wavelengths. Hence, there is a trade-off between
the exposed area, the minimum lithographic feature size resolution, and the
number of photons used for the exposure. We also show that the proposed method
will work even under non-ideal conditions, albeit with somewhat poorer
performance.Comment: 8 pages, 8 figures, 1 table. Written in RevTe
A pseudo-spectral method for the Kardar-Parisi-Zhang equation
We discuss a numerical scheme to solve the continuum Kardar-Parisi-Zhang
equation in generic spatial dimensions. It is based on a momentum-space
discretization of the continuum equation and on a pseudo-spectral approximation
of the non-linear term. The method is tested in (1+1)- and (2+1)- dimensions,
where it is shown to reproduce the current most reliable estimates of the
critical exponents based on Restricted Solid-on-Solid simulations. In
particular it allows the computations of various correlation and structure
functions with high degree of numerical accuracy. Some deficiencies which are
common to all previously used finite-difference schemes are pointed out and the
usefulness of the present approach in this respect is discussed.Comment: 12 pages, 13 .eps figures, revetx4. A few equations have been
corrected. Erratum sent to Phys. Rev.
Polarized photons in radiative muon capture
We discuss the measurement of polarized photons arising from radiative muon
capture. The spectrum of left circularly polarized photons or equivalently the
circular polarization of the photons emitted in radiative muon capture on
hydrogen is quite sensitive to the strength of the induced pseudoscalar
coupling constant . A measurement of either of these quantities, although
very difficult, might be sufficient to resolve the present puzzle resulting
from the disagreement between the theoretical prediction for and the
results of a recent experiment. This sensitivity results from the absence of
left-handed radiation from the muon line and from the fact that the leading
parts of the radiation from the hadronic lines, as determined from the chiral
power counting rules of heavy-baryon chiral perturbation theory, all contain
pion poles.Comment: 10 pages, 6 figure
Virtual Effects of Split SUSY in Higgs Productions at Linear Colliders
In split supersymmetry the gauginos and higgsinos are the only supersymmetric
particles possibly accessible at foreseeable colliders like the CERN Large
Hadron Collider (LHC) and the International Linear Collider (ILC). In order to
account for the cosmic dark matter measured by WMAP, these gauginos and
higgsinos are stringently constrained and could be explored at the colliders
through their direct productions and/or virtual effects in some processes. The
clean environment and high luminosity of the ILC render the virtual effects of
percent level meaningful in unraveling the new physics effects. In this work we
assume split supersymmetry and calculate the virtual effects of the
WMAP-allowed gauginos and higgsinos in Higgs productions e+e- -> Z h and e+e-
-> \nu_e \bar_\nu_e h through WW fusion at the ILC. We find that the production
cross section of e+e- -> Zh can be altered by a few percent in some part of the
WMAP-allowed parameter space, while the correction to the WW-fusion process
e+e- -> \nu_e \bar_\nu_e h is below 1%. Such virtual effects are correlated
with the cross sections of chargino pair productions and can offer
complementary information in probing split supersymmetry at the colliders.Comment: more discussions added (7 pages, 10 figs
Color-scalable flow cytometry with Raman tags
Flow cytometry is an indispensable tool in biology and medicine for counting and analyzing cells in large heterogeneous populations. It identifies multiple characteristics of every single cell, typically via fluorescent probes that specifically bind to target molecules on the cell surface or within the cell. However, flow cytometry has a critical limitation: the color barrier. The number of chemical traits that can be simultaneously resolved is typically limited to several due to the spectral overlap between fluorescence signals from different fluorescent probes. Here, we present color-scalable flow cytometry based on coherent Raman flow cytometry with Raman tags to break the color barrier. This is made possible by combining a broadband Fourier-transform coherent anti-Stokes Raman scattering (FT-CARS) flow cytometer, resonance-enhanced cyanine-based Raman tags, and Raman-active dots (Rdots). Specifically, we synthesized 20 cyanine-based Raman tags whose Raman spectra are linearly independent in the fingerprint region (400 to 1,600 cm-1). For highly sensitive detection, we produced Rdots composed of 12 different Raman tags in polymer nanoparticles whose detection limit was as low as 12 nM for a short FT-CARS signal integration time of 420 ”s. We performed multiplex flow cytometry of MCF-7 breast cancer cells stained by 12 different Rdots with a high classification accuracy of 98%. Moreover, we demonstrated a large-scale time-course analysis of endocytosis via the multiplex Raman flow cytometer. Our method can theoretically achieve flow cytometry of live cells with >140 colors based on a single excitation laser and a single detector without increasing instrument size, cost, or complexity
Intercalibration of the barrel electromagnetic calorimeter of the CMS experiment at start-up
Calibration of the relative response of the individual channels of the barrel electromagnetic calorimeter of the CMS detector was accomplished, before installation, with cosmic ray muons and test beams. One fourth of the calorimeter was exposed to a beam of high energy electrons and the relative calibration of the channels, the intercalibration, was found to be reproducible to a precision of about 0.3%. Additionally, data were collected with cosmic rays for the entire ECAL barrel during the commissioning phase. By comparing the intercalibration constants obtained with the electron beam data with those from the cosmic ray data, it is demonstrated that the latter provide an intercalibration precision of 1.5% over most of the barrel ECAL. The best intercalibration precision is expected to come from the analysis of events collected in situ during the LHC operation. Using data collected with both electrons and pion beams, several aspects of the intercalibration procedures based on electrons or neutral pions were investigated
- âŠ