106 research outputs found
Multipoint efficient iterative methods and the dynamics of Ostrowski's method
This is an Author's Accepted Manuscript of an article published in José L. Hueso, Eulalia Martínez & Carles Teruel (2019) Multipoint efficient iterative methods and the dynamics of Ostrowski's method, International Journal of Computer Mathematics, 96:9, 1687-1701, DOI: 10.1080/00207160.2015.1080354 in the International Journal of Computer Mathematics, SEP 2 2019 [copyright Taylor & Francis], available online at: http://www.tandfonline.com/10.1080/00207160.2015.1080354[EN] In this work, we introduce a modification into the technique, presented in A. Cordero, J.L. Hueso, E. Martinez, and J.R. Torregrosa [Increasing the convergence order of an iterative method for nonlinear systems, Appl. Math. Lett. 25 (2012), pp. 2369-2374], that increases by two units the convergence order of an iterative method. The main idea is to compose a given iterative method of order p with a modification of Newton's method that introduces just one evaluation of the function, obtaining a new method of order p+2, avoiding the need to compute more than one derivative, so we improve the efficiency index in the scalar case. This procedure can be repeated n times, with the same approximation to the derivative, obtaining new iterative methods of order p+2n. We perform different numerical tests that confirm the theoretical results. By applying this procedure to Newton's method one obtains the well known fourth order Ostrowski's method. We finally analyse its dynamical behaviour on second and third degree real polynomials.This research was supported by Ministerio de Economia y Competitividad under grant PGC2018-095896-B-C22 and by the project of Generalitat Valenciana Prometeo/2016/089.Hueso, JL.; Martínez Molada, E.; Teruel-Ferragud, C. (2019). Multipoint efficient iterative methods and the dynamics of Ostrowski's method. International Journal of Computer Mathematics. 96(9):1687-1701. https://doi.org/10.1080/00207160.2015.1080354S16871701969Amat, S., Busquier, S., & Plaza, S. (2010). Chaotic dynamics of a third-order Newton-type method. Journal of Mathematical Analysis and Applications, 366(1), 24-32. doi:10.1016/j.jmaa.2010.01.047Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.062Cordero, A., Martínez, E., & Torregrosa, J. R. (2009). Iterative methods of order four and five for systems of nonlinear equations. Journal of Computational and Applied Mathematics, 231(2), 541-551. doi:10.1016/j.cam.2009.04.015Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2012). Increasing the convergence order of an iterative method for nonlinear systems. Applied Mathematics Letters, 25(12), 2369-2374. doi:10.1016/j.aml.2012.07.005Jarratt, P. (1966). Some fourth order multipoint iterative methods for solving equations. Mathematics of Computation, 20(95), 434-434. doi:10.1090/s0025-5718-66-99924-
On numerical aspects of pseudo-complex powers in R^3
In this paper we consider a particularly important case of 3D monogenic polynomials that are isomorphic to the integer powers of one complex variable (called pseudo-complex powers or
pseudo-complex polynomials, PCP). The construction of bases for spaces of monogenic polynomials in the framework of Clifford Analysis has been discussed by several authors and from different points of view. Here our main concern are numerical aspects of the implementation of PCP as bases of monogenic polynomials of homogeneous degree k. The representation of the well known Fueter polynomial basis by a particular PCP-basis is subject to a detailed analysis for showing the numerical effciency of the use of PCP. In this context a modiffcation
of the Eisinberg-Fedele algorithm for inverting a Vandermonde matrix is presented.This work was supported by Portuguese funds through the CIDMA - Center for Research and Development in Mathematics and Applications, the Research Centre of Mathematics of the University of Minho and the Portuguese Foundation for Science and Technology ("FCT - Fundacao para a Ciencia e a Tecnologia"), within projects PEst-OE/MAT/UI4106/2014 and PEstOE/MAT/UI0013/2014
Engineering Privacy in Public: Confounding Face Recognition
The objective of DARPA’s Human ID at a Distance (HID) program is to develop automated biometric identification technologies to detect, recognize and identify humans at great distances. While nominally intended for security applications, if deployed widely, such technologies could become an enormous privacy threat, making practical the automatic surveillance of individuals on a grand scale. Face recognition, as the HID technology most rapidly approaching maturity, deserves immediate research attention in order to understand its strengths and limitations, with an objective of reliably foiling it when it is used inappropriately. This paper is a status report for a research program designed to achieve this objective within a larger goal of similarly defeating all HID technologies
Synchronization and resonance in a driven system of coupled oscillators
We study the noise effects in a driven system of globally coupled
oscillators, with particular attention to the interplay between driving and
noise. The self-consistency equation for the order parameter, which measures
the collective synchronization of the system, is derived; it is found that the
total order parameter decreases monotonically with noise, indicating overall
suppression of synchronization. Still, for large coupling strengths, there
exists an optimal noise level at which the periodic (ac) component of the order
parameter reaches its maximum. The response of the phase velocity is also
examined and found to display resonance behavior.Comment: 17 pages, 3 figure
Phase synchronization and noise-induced resonance in systems of coupled oscillators
We study synchronization and noise-induced resonance phenomena in systems of
globally coupled oscillators, each possessing finite inertia. The behavior of
the order parameter, which measures collective synchronization of the system,
is investigated as the noise level and the coupling strength are varied, and
hysteretic behavior is manifested. The power spectrum of the phase velocity is
also examined and the quality factor as well as the response function is
obtained to reveal noise-induced resonance behavior.Comment: to be published in Phys. Rev.
Interferometric Space Missions for the Search for Terrestrial Exoplanets: Requirements on the Rejection Ratio
The requirements on space missions designed to study Terrestrial exoplanets
are discussed. We then investigate whether the design of such a mission,
specifically the Darwin nulling interferometer, can be carried out in a
simplified scenario. The key element here is accepting somewhat higher levels
of stellar leakage. We establish detailed requirements resulting from the
scientific rationale for the mission, and calculate detailed parameters for the
stellar suppression required to achieve those requirements. We do this
utilizing the Darwin input catalogue. The dominating noise source for most
targets in this sample is essentially constant for all targets, while the
leakage diminishes with the square of the distance. This means that the stellar
leakage has an effect on the integration time only for the nearby stars, while
for the more distant targets its influence decreases significantly. We assess
the impact of different array configurations and nulling profiles and identify
the stars for which the detection efficiency can be maximized.Comment: 21 pages, 8 figures; TBP in Astrophysics and Space Science 200
Mechanisms underlying a thalamocortical transformation during active tactile sensation
During active somatosensation, neural signals expected from movement of the sensors are suppressed in the cortex, whereas information related to touch is enhanced. This tactile suppression underlies low-noise encoding of relevant tactile features and the brain’s ability to make fine tactile discriminations. Layer (L) 4 excitatory neurons in the barrel cortex, the major target of the somatosensory thalamus (VPM), respond to touch, but have low spike rates and low sensitivity to the movement of whiskers. Most neurons in VPM respond to touch and also show an increase in spike rate with whisker movement. Therefore, signals related to self-movement are suppressed in L4. Fast-spiking (FS) interneurons in L4 show similar dynamics to VPM neurons. Stimulation of halorhodopsin in FS interneurons causes a reduction in FS neuron activity and an increase in L4 excitatory neuron activity. This decrease of activity of L4 FS neurons contradicts the "paradoxical effect" predicted in networks stabilized by inhibition and in strongly-coupled networks. To explain these observations, we constructed a model of the L4 circuit, with connectivity constrained by in vitro measurements. The model explores the various synaptic conductance strengths for which L4 FS neurons actively suppress baseline and movement-related activity in layer 4 excitatory neurons. Feedforward inhibition, in concert with recurrent intracortical circuitry, produces tactile suppression. Synaptic delays in feedforward inhibition allow transmission of temporally brief volleys of activity associated with touch. Our model provides a mechanistic explanation of a behavior-related computation implemented by the thalamocortical circuit
- …