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Abstract We present a local convergence analysis for eighth-order variants of Newton’s method in order to
approximate a solution of a nonlinear equation. We use hypotheses up to the first derivative in contrast to
earlier studies such as Amat et al. (Appl Math Comput 206(1):164–174, 2008), Amat et al. (Aequationes Math
69:212–213, 2005), Chun et al. (Appl Math Comput. 227:567–592, 2014), Petkovic et al. (Multipoint methods
for solving nonlinear equations. Elsevier, Amsterdam, 2013), Potra and Ptak (Nondiscrete induction and
iterative processes. Pitman Publ, Boston, 1984), Rall (Computational solution of nonlinear operator equations.
Robert E. Krieger, New York, 1979), Ren et al. (Numer Algorithms 52(4):585–603, 2009), Rheinboldt (An
adaptive continuation process for solving systems of nonlinear equations. Banach Center, Warsaw, 1975),
Traub (Iterative methods for the solution of equations. Prentice Hall, Englewood Cliffs, 1964), Weerakoon and
Fernando (Appl Math Lett 13:87–93, 2000), Wang and Kou (J Differ Equ Appl 19(9):1483–1500, 2013) using
hypotheses up to the seventh derivative. This way the applicability of these methods is extended under weaker
hypotheses. Moreover, the radius of convergence and computable error bounds on the distances involved are
also given in this study. Numerical examples are also presented in this study.

Mathematics Subject Classification 65D10 · 65D99

1 Introduction

In this study, we are concerned with the problem of approximating a locally unique solution x∗ of equation

F(x) = 0, (1.1)

where F : D ⊆ S → S is a nonlinear function, D is a convex subset of S and S is R or C. Newton-like
methods are used for finding solution of (1.1), these methods are usually studied based on semi-local and local
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convergence. The semi-local convergence matter is, based on the information around an initial point, to give
conditions ensuring the convergence of the iterative procedure; while the local one is, based on the information
around a solution, to find estimates of the radii of convergence balls [3,4,20–22,24,25].

Third-order methods such as Euler’s, Halley’s, super Halley’s, Chebyshev’s [1–27] require the evaluation
of the second derivative F ′′ at each step, which in general is very expensive. That is why many authors have
used higher order multipoint methods [1–27]. In this paper, we study the local convergence of eighth-order
method defined for each n = 0, 1, 2, . . . by

yn = xn − 2

3
F ′(xn)−1F(xn)

zn = xn − 1

2
F ′(xn)−1F(xn) − 3

2
[1 + 2F ′(xn)−1F ′(yn)]−1F ′(xn)−1F(xn) (1.2)

xn+1 = zn − A−1
n F(zn),

where x0 is an initial point,

An = 2([xn, zn; F] − [xn, yn; F]) + [yn, zn; F] + yn − zn
yn − xn

([xn, yn; F] − F ′(xn)),

[x, y; F] = F(y)−F(x)
y−x , y �= x with F ′(x) = [x, x; F] is a divided difference of order one for function F at

the point x and y [3,4,20–22,25]. Petkovic et al. [20] developed several eighth-order methods using optimal
fourth-order methods followed by a step of interpolation. In particular they showed using Taylor expansions
that the order of convergence for method (1.2) is eight. Method (1.2) has already been shown in [8] (see also
[20]) to be performing better than other competing methods using similar information. Several authors have
also studied eight order methods [2,8–11] or methods of order higher than 2 [1,3–7,12–27].

Other single and multipoint methods can be found in [2,3,20,25] and the references therein. The local
convergence of the preceding methods has been shown under hypotheses up to the seventh derivative (or even
higher) although only the first derivative appears in method (1.2). These hypotheses restrict the applicability
of these methods. As a motivational example, let us define function f on D = [− 1

2 ,
5
2 ] by

f (x) =
{
2x3 ln x + x5 − x4, x �= 0
0, x = 0

Choose x∗ = 1. We have that

f ′(x) = 6x2 ln x + 5x4 − 4x3 + 2x2, f ′(1) = 3,

f ′′(x) = 12x ln x + 20x3 − 12x2 + 10x

f ′′′(x) = 12 ln x + 60x2 − 24x + 22.

Then, obviously, function f ′′′ is unbounded on D. In the present paper, we use hypotheses only on the first
derivative. Moreover, we provide a radius of convergence and computable error estimates on the distances
using |xn − x∗| with Lipschitz constants not provided in the earlier studies by Taylor expansions. This way
we expand the applicability of method (1.2).

The rest of the paper is organized as follows: Sect. 2 contains the local convergence analysis of methods
(1.2). The numerical examples are presented in the concluding Sect. 3.

2 Local convergence for method (1.2)

We present the local convergence analysis of method (1.2) in this section. Let U (v, ρ), Ū (v, ρ) stand for the
open and closed balls in S, respectively, with center v ∈ S and of radius ρ > 0.

For the local convergence analysis that follows we define some functions and parameters. Let Li > 0, i =
0, 1, 2, 3, 4, M ∈ (0, 3) be given parameters. Define functions on the interval [0, 1

L0
) by

g1(t) = 1

2(1 − L0t)

(
Lt + 2M

3

)
,
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and parameters

r1 = 2
(
1 − M

3

)
2L0 + L

< rA = 2

2L0 + L
<

1

L0
. (2.1)

Notice that r1 > 0 and g1(r1) = 1. Moreover, define functions on the interval [0, 1
L0

) by

g0(t) = L0

2
(5 + 3g1(t))t

and

h0(t) = g0(t)t − 1.

We have that h0(0) = −1 < 0 and h0(t) → +∞ as t → 1
L0

−
. It follows from the intermediate value theorem

that function h0 has zeros in the interval
(
0, 1

L0

)
. Denote by r0 the smallest such zero. Then, define functions

on the interval [0, r0) by

g2(t) = 1

2(1 − L0t)

[
L + 3ML0(1 + g1(t))

2(1 − g0(t))

]
t

and

h2(t) = g2(t) − 1.

We have that h2(0) = −1 < 0 and h2(t) → +∞ as t → r−
0 . Hence, function h2 has zeros in the interval

(0, r0). Denote the smallest such zero by r2. Furthermore, define functions p, p1 and p2 on the interval (0, r0)
by

p(t) = 1

4

2(1 + L0t) + 3
2 L0(1 + g1(t))t

1 − g0(t)

p1(t) = [(5L1 + p(t)(L0 + L1)) + (2 + p(t))L2g1(t) + 3L2g2(t)]t
and

p2(t) = [(L1 + L4 p(t)) + (2L3 + L4 p(t))g1(t) + (L2 + 2L3)g2(t)]t
set p̄1(t) = p1(t) − 1 and p̄2 = p2(t) − 1. We have that p̄1(0) = −1 < 0 and p̄1(t) → +∞ as t → r−

0 .
Hence, function p̄1 has a smallest zero in (0, r0) denoted by r p̄1 . Similarly function p̄2 has a smallest zero in
(0, r0) denoted by r p̄2 . Define function

p0 =
{
p1, if r p̄2 ≤ r p̄1
p2, if r p̄1 ≤ r p̄2 .

Finally, define function on the interval [0, r0) by

g3(t) =
[
1 + M

1 − p0(t)

]
g2(t)

and set h3(t) = g3(t) − 1. We have that h3(0) = −1 and h3(t) → +∞ as t → r p̄1 if p0 = p1 or as t → r p̄2
if p0 = p2. Hence, function h3 has a smallest zero denoted by r3 in the interval (0, r0). Set

r = min{r1, r2, r3, r p̄1, r p̄2}. (2.2)

Then, we have that

0 ≤ g1(t) < 1, (2.3)

0 ≤ g0(t) < 1, (2.4)

0 ≤ g2(t) < 1, (2.5)

0 ≤ p0(t) < 1, (2.6)

and
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0 ≤ g3(t) < 1 for each t ∈ [0, r). (2.7)

Function p0 is defined in terms of L0, L1, L2, g0, g1 and g2 (i.e., as function of p1) or in terms of
L0, L1, L4, g0, g1 and g2 (i.e., as function of p2). In practice, we shall choose the choice of p0 leading
to the largest radius which will be r p̄1 or r p̄2 , since we need to obtain the largest possible convergence ball.

Next, using the above notation we can present the local convergence analysis of method (1.2).

Theorem 2.1 Let F : D ⊆ S → S be a differentiable function. Suppose that there exist a divided difference
of order one [., .; F] : D × D → L(S, S), x∗ ∈ D, parameters Li > 0, i = 1, 2, . . . , 4, M ∈ (0, 3) such that
for each x, y ∈ D the following hold

F(x∗) = 0, F ′(x∗) �= 0, (2.8)

|F ′(x∗)−1(F ′(x) − F ′(x∗))| ≤ L0|x − x∗|, (2.9)

|F ′(x∗)−1(F ′(x) − F ′(y))| ≤ L|x − y|, (2.10)

|F ′(x∗)−1([x, y; F] − F ′(x∗))| ≤ L1|x − x∗| + L2|y − x∗|, (2.11)

|F ′(x∗)−1([x, z; F] − [x, y; F])| ≤ L3|z − y|, (2.12)

|F ′(x∗)−1([x, y; F] − F ′(x))| ≤ L4|x − y|, (2.13)

|F ′(x∗)−1F ′(x)| ≤ M (2.14)

and

Ū (x∗, r) ⊆ D, (2.15)

where r is defined above Theorem 2.1. Then, sequence {xn} generated for x0 ∈ U (x∗, r) by method (1.2) is well
defined, remains in U (x∗, r) for each n = 0, 1, 2, . . . and converges to x∗. Moreover, the following estimates
hold for each n = 0, 1, 2, . . . ,

|yn − x∗| ≤ g1(|xn − x∗|)|xn − x∗| < |xn − x∗| < r, (2.16)

|zn − x∗| ≤ g2(|xn − x∗|)|xn − x∗| < |xn − x∗| (2.17)

and

|xn+1 − x∗| ≤ g3(|xn − x∗|)|xn − x∗| < |xn − x∗|, (2.18)

where the “g” functions are defined above Theorem 2.1. Furthermore, suppose that there exists T ∈ [r, 2
L0

)

such that Ū (x∗, T ) ⊂ D. Then the limit point x∗ is the only solution of equation F(x) = 0 in Ū (x∗, T ).

Proof By hypothesis x0 ∈ U (x∗, r), the definition of r and (2.9) we get that

|F ′(x∗)−1(F ′(x0) − F ′(x∗))| ≤ L0|x0 − x∗| < L0r < 1. (2.19)

It follows from (2.19) and theBanachLemmaon invertible functions [3,4,19,20,22,23] that F ′(x0) is invertible
and

|F ′(x0)−1F ′(x∗)| ≤ 1

1 − L0|x0 − x∗| <
1

1 − L0r
. (2.20)
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Hence, y0 is well defined by the first substep of method (1.2) for n = 0. We also have that

y0 − x∗ = x0 − x∗ − F(x0)

F ′(x0)
+ 1

3

F(x0)

F ′(x0)

= −[F ′(x0)−1F ′(x∗)]
[ ∫ 1

0
F ′(x∗)−1

×[F(x∗ + θ(x0 − x∗)) − F ′(x0)](x0 − x∗)dθ

]

+1

3
[F ′(x0)−1F ′(x∗)]

[∫ 1

0
F ′(x∗)−1

×[F(x∗ + θ(x0 − x∗))(x0 − x∗)dθ

]
. (2.21)

Using (2.2), (2.3), (2.10), (2.14) and (2.21) we get in turn that

|y0 − x∗| ≤ |F ′(x0)−1F ′(x∗)|
×|

∫ 1

0
F ′(x∗)−1[F ′(x∗ + θ(x0 − x∗) − F ′(x0)]dθ ||x0 − x∗|

+|F ′(x0)−1F ′(x∗)|
×|

∫ 1

0
F ′(x∗)−1F ′(x∗ + θ(x0 − x∗)dθ ||x0 − x∗|

≤ L|x0 − x∗|2
2(1 − L0|x0 − x∗|) + M|x0 − x∗|

3(1 − L0|x0 − x∗|)
= g1(|x0 − x∗|)|x0 − x∗| < |x0 − x∗| < r,

which shows (2.16) for n = 0, where we used |x∗ + θ(x0 − x∗)| = θ |x0 − x∗| ≤ |x0 − x∗| < r, that is
x∗ + θ(x0 − x∗) ∈ U (x∗, r) for each θ ∈ [0, 1]. Next, we shall show that B0 is invertible, where

B0 = F ′(x0) + 3

2
(F ′(y0) − F ′(x0)). (2.22)

Using (2.2), (2.3), (2.4), (2.16) and (2.22) we get

|F ′(x∗)−1(B0 − F ′(x∗)| ≤ |F ′(x∗)−1(F ′(x0) − F ′(x∗))|
+3

2
|F ′(x∗)−1(F ′(y0) − F ′(x∗))|

+|F ′(x∗)−1(F ′(x0) − F ′(x∗))|
≤ L0[|x0 − x∗| + 3

2
(|y0 − x∗| + |x0 − x∗|)]

≤ L0[1 + 3

2
(g1(|x0 − x∗|) + 1)]|x0 − x∗|

= g0(|x0 − x∗|) < g0(r) < 1. (2.23)

It follows from (2.23) that B0 is invertible and

|B−1
0 F ′(x∗)| ≤ 1

1 − g0(|x0 − x∗|) . (2.24)

Hence, z0 is well defined by the second substep of method (1.2) for n = 0. Then, we can write

z0 − x∗ = [x0 − x∗ − F ′(x0)−1F(x0)]

+1

2
F ′(x0)−1F(x0)

⎡
⎣1 − 1

1 + 3
2

(
F ′(y0)−F ′(x0)

F ′(x0)

)
⎤
⎦
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= [x0 − x∗ − F ′(x0)−1F(x0)]
+3

4
F ′(x0)−1F(x0)B

−1
0 (F ′(y0) − F ′(x0)). (2.25)

Then, we have by (2.2), (2.3), (2.4), (2.5), (2.9), (2.14), (2.16), (2.24) and (2.25) that

|z0 − x∗| ≤ |x0 − x∗ − F ′(x0)−1F(x0)| + 3

4
|F ′(x0)−1F(x0)||B−1

0 F ′(x∗)|
×|F ′(x∗)−1(F ′(y0) − F ′(x∗))| + |F ′(x∗)−1(F ′(x0) − F ′(x∗))|

≤ L|x0 − x∗|2
2(1 − L0|x0 − x∗|) + 3L0(|x0 − x∗| + |y0 − x∗|)M|x0 − x∗|

4(1 − g0(|x0 − x∗|))(1 − L0|x0 − x∗|)
≤ 1

2(1 − L0|x0 − x∗|)
[
L + 3L0M(1 + g1(|x0 − x∗|))

2(1 − g0(|x0 − x∗|))
]

|x0 − x∗|
= g2(|x0 − x∗|)|x0 − x∗| < g2(r)|x0 − x∗| < |x0 − x∗| < r,

which shows (2.17) for n = 0 and z0 ∈ U (x∗, r). Next, we need an estimate on A−1
0 . First, we have that

y0 − z0
y0 − x0

= − 2
3 F

′(x0)−1F(x0) + 1
2 F

′(x0)−1F(x0)

− 2
3 F

′(x0)−1F(x0)

+
1
2 F

′(x0)−1F(x0)
1

1+ 3
2

(
F ′(x0)

F ′(y0)
−1

)

− 2
3 F

′(x0)−1F(x0)

= −1

4
B−1
0 F ′(x∗)F ′(x∗)−1(2(F ′(x0) − F ′(x∗) + F ′(x∗))

+3

2
((F ′(y0) − F ′(x∗)) + (F ′(x∗) − F ′(x0))), (2.26)

using (2.9), (2.16), (2.24), (2.26) and the definition of function p, we get that

| y0 − z0
y0 − x0

| ≤ 1

4
|B−1

0 F ′(x∗)|[2(|F ′(x∗)−1(F ′(x0) − F ′(x∗))| + |F‘(x∗)−1F ′(x∗)|)

+3

2
(|F ′(x∗)−1(F ′(y0) − F ′(x∗))| + |F ′(x∗)−1(F ′(x0) − F ′(x∗))|]

≤ 1

4

2(1 + L0|x0 − x∗|) + 3
2 L0(|x0 − x∗| + |y0 − x∗|)

1 − g0(|x0 − x∗|)
≤ 1

4

2(1 + L0|x0 − x∗|) + 3
2 L0(1 + g1(|x0 − x∗|))|x0 − x∗|

1 − g0(|x0 − x∗|)
= p(|x0 − x∗|). (2.27)

Then, by definition of A0, p1, (2.9), (2.11), (2.16), (2.17) and (2.27) we get that

|F ′(x∗)−1(A0 − F ′(x∗))|
≤ 2|F ′(x∗)−1([x0, z0 : F] − F ′(x∗))|

+2|F ′(x∗)−1([x0, z0 : F] − F ′(x∗))| + |F ′(x∗)−1([x0, z0 : F] − F ′(x∗))|
+p(|x0 − x∗|)|F ′(x∗)−1([x0, y0 : F] − F ′(x∗))| + |F ′(x∗)−1(F ′(x0) − F ′(x∗))|

≤ 2(L1|x0 − x∗| + L2|y0 − x∗|) + 2(L1|x0 − x∗| + L2|y0 − x∗|)
+L1|x0 − x∗| + L2|z0 − x∗| + p(|x0 − x∗|)
×(L1|x0 − x∗| + L2|y0 − x∗| + L0|x0 − x∗|)

≤ (5L1 + p(|x0 − x∗|)(L0 + L1))|x0 − x∗|
+(2L2 + p(|x0 − x∗|)L2)|y0 − x∗| + 3L2|z0 − x∗|

≤ (5L1 + p(|x0 − x∗|)(L0 + L1))|x0 − x∗|

123



Arab. J. Math. (2015) 4:81–90 87

+(2L2 + L2 p(|x0 − x∗|))|y0 − x∗|
+3L2|z0 − x∗|

≤ (5L1 + p(|x0 − x∗|)(L0 + L))|x0 − x∗|
+(2L2 + L2 p(|x0 − x∗|))g1(|x0 − x∗|)|x0 − x∗|
+3L2g2(|x0 − x∗|)|x0 − x∗|

= p1(|x0 − x∗|). (2.28)

However, if we use instead of (2.11) the estimate (2.12) and (2.13), we obtain from (2.22) that

|F ′(x∗)−1(A0 − F ′(x∗))|
≤ 2|F ′(x∗)−1([x0, z0 : F] − [x0, y0 : F])|

+|F ′(x∗)−1([y0, z0 : F] − F ′(x∗))|
+p(|x0 − x∗|)|F ′(x∗)−1([x0, y0 : F] − F ′(x0))|

≤ 2L3|z0 − x0| + L1|x0 − x∗| + L2|z0 − x∗|) + p(|x0 − x∗|)L4|y0 − x0|
≤ 2L3(|z0 − x∗| + |y0 − x∗|) + L1|x0 − x∗|

+L2|z0 − x∗| + L4 p(|x0 − x∗|)(|y0 − x∗| + |x0 − x∗|)
≤ (L1 + L4 p(|x0 − x∗|))|x0 − x∗| + (2L3 + L4 p(|x0 − x∗|))|y0 − x∗|

+(L2 + 2L3)|z0 − x∗|
≤ (L1 + L4 p(|x0 − x∗|))|x0 − x∗|

+(2L3 + L4 p(|x0 − x∗|))g1(|x0 − x∗|)|x0 − x∗|
+(L2 + 2L3)g2(|x0 − x∗|)|x0 − x∗|

= p2(|x0 − x∗|). (2.29)

Then, from (2.2), (2.4), (2.28), (2.29) and the definition of function p0 we get that A0 is invertible and

|A−1
0 F ′(x∗)| ≤ 1

1 − p0(t)
. (2.30)

Then, using the last substep of method (1.2) for n = 0, (2.2), (2.7), (2.14), (2.18), (2.20) and (2.30) we obtain
that

|x1 − x∗| ≤ |z0 − x∗| + |A−1
0 F(x∗)||F ′(x∗)−1F(z0)|

≤
[
1 + M

1 − p0(|x0 − x∗|)
]

|z0 − x∗|

≤
[
1 + M

1 − p0(|x0 − x∗|)
]
g2(|x0 − x∗|)|x0 − x∗|

= g3(|x0 − x∗|)|x0 − x∗| < g3(r)|x0 − x∗| < |x0 − x∗| < r,

which shows (2.18) forn = 0 and x1 ∈ U (x∗, r).Bysimply replacing x0, y0, x1 by xk, yk, xk+1 in the preceding
estimates we arrive at estimates (2.16)–(2.18). Using the estimate |xk+1 − x∗| < |xk − x∗| < r, we deduce
that xk+1 ∈ U (x∗, r) and limk→∞ xk = x∗. To show the uniqueness part, let Q = ∫ 1

0 F ′(y∗ + θ(x∗ − y∗)dθ

for some y∗ ∈ Ū (x∗, T ) with F(y∗) = 0. Using (2.6) we get that

|F ′(x∗)−1(Q − F ′(x∗))| ≤
∫ 1

0
L0|y∗ + θ(x∗ − y∗) − x∗|dθ

≤
∫ 1

0
(1 − θ)|x∗ − y∗|dθ ≤ L0

2
R < 1. (2.31)

It follows from (2.20) and the Banach Lemma on invertible functions that Q is invertible. Finally, from the
identity 0 = F(x∗) − F(y∗) = Q(x∗ − y∗), we deduce that x∗ = y∗. ��
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Remark 2.2 1. In view of (2.9) and the estimate

|F ′(x∗)−1F ′(x)| = |F ′(x∗)−1(F ′(x) − F ′(x∗)) + I |
≤ 1 + |F ′(x∗)−1(F ′(x) − F ′(x∗))| ≤ 1 + L0|x − x∗|

condition (2.14) can be dropped and M can be replaced by

M(t) = 1 + L0t.

2. The results obtained here can be used for operators F satisfying autonomous differential equations [3] of
the form

F ′(x) = P(F(x))

where P is a continuous operator. Then, since F ′(x∗) = P(F(x∗)) = P(0), we can apply the results
without actually knowing x∗. For example, let F(x) = ex − 1. Then, we can choose: P(x) = x + 1.

3. The radius rA given by (2.1) was shown by us to be the convergence radius of Newton’s method [2–4]

xn+1 = xn − F ′(xn)−1F(xn) for each n = 0, 1, 2, . . . (2.32)

under the conditions (2.9) and (2.10). It follows from (2.2) and r < rA that the convergence radius r of
the method (1.2) cannot be larger than the convergence radius rA of the second-order Newton’s method
(2.32). As already noted in [2,3] rA is at least as large as the convergence ball given by Rheinboldt [24]

rR = 2

3L
. (2.33)

In particular, for L0 < L we have that

rR < r

and
rR
rA

→ 1

3
as

L0

L
→ 0.

That is our convergence ball rA is at most three times larger than Rheinboldt’s. The same value for rR was
given by Traub [25].

4. It is worth noticing that method (1.2) is not changing when we use the conditions of Theorem 2.1 instead
of the stronger conditions used in [1,2,8–23,25–27]. Moreover, we can compute the computational order
of convergence (COC) defined by

ξ = ln

( |xn+1 − x∗|
|xn − x∗|

)
/ ln

( |xn − x∗|
|xn−1 − x∗|

)

or the approximate computational order of convergence

ξ1 = ln

( |xn+1 − xn|
|xn − xn−1|

)
/ ln

( |xn − xn−1|
|xn−1 − xn−2|

)
.

This waywe obtain in practice the order of convergence in a way that avoids the bounds involving estimates
using estimates higher than the first Fréchet derivative of operator F.

3 Numerical example

We present a numerical example in this section.

Example 3.1 Let D = [−∞,+∞]. Define function f of D by

f (x) = sin(x). (3.1)

Then we have for x∗ = 0 that L0 = L = M = L3 = L4 = 1, L1 = L2 = 1
2 . The parameters are given in

Table 1.

It is well known that due to errors and since higher order derivatives do not appear in the definition of ξ or ξ1
the computations may not necessarily lead to exactly ξ1 = 8 as indicated by the Example 3.1.
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Table 1

rA = 0.6667
r1 = 0.4444
r2 = 0.3361
r p̄1 = 0.9240
r p̄2 = 0.1506
r3 = 0.0082
ξ1 = 7.9389

4 Conclusion

We presented a new local convergence analysis for an eighth-order method for solving equations based on
contractive techniques and Lipschitz constants under hypotheses only on the first derivative. This way we
expanded the applicability of method (1.2), since its convergence was shown using hypotheses up to the
seventh derivative [8,20]. Moreover, we provided computable radius of convergence as well as error estimates
not given in earlier studies [8,20]. The same advantages can be obtained if our technique is used on similar
eighth-order methods listed in the references (see [8,20] and the references therein).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made.
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