993 research outputs found
Effective Dynamic Range in Measurements with Flash Analog-to-Digital Convertor
Flash Analog to Digital Convertor (FADC) is frequently used in nuclear and
particle physics experiments, often as the major component in big multi-channel
systems. The large data volume makes the optimization of operating parameters
necessary. This article reports a study of a method to extend the dynamic range
of an 8-bit FADC from the nominal value. By comparing the integrated
pulse area with that of a reference profile, good energy reconstruction and
event identification can be achieved on saturated events from CsI(Tl) crystal
scintillators. The effective dynamic range can be extended by at least 4 more
bits. The algorithm is generic and is expected to be applicable to other
detector systems with FADC readout.Comment: 19 pages, 1 table, 10 figure
QCD Factorized Drell-Yan Cross Section at Large Transverse Momentum
We derive a new factorization formula in perturbative quantum chromodynamics
for the Drell-Yan massive lepton-pair cross section as a function of the
transverse momentum of the pair. When is much larger than the
pair's invariant mass , this factorization formula systematically resums the
logarithmic contributions of the type to all
orders in the strong coupling . When , our formula yields
the same Drell-Yan cross section as conventional fixed order QCD perturbation
theory. We show that resummation is important when the collision energy
is large enough and , and we argue that perturbative
expansions are more stable and reliable in terms of the modified factorization
formula.Comment: 36 pages, latex, including 16 figure
Virtual photon fragmentation functions
We introduce operator definitions for virtual photon fragmentation functions,
which are needed for reliable calculations of Drell-Yan transverse momentum
() distributions when is much larger than the invariant mass . We
derive the evolution equations for these fragmentation functions. We calculate
the leading order evolution kernels for partons to fragment into a unpolarized
as well as a polarized virtual photon. We find that fragmentation functions to
a longitudinally polarized virtual photon are most important at small , and
the fragmentation functions to a transversely polarized virtual photon dominate
the large region. We discuss the implications of this finding to the
J/ mesons' polarization at large transverse momentum.Comment: Latex, 19 pages including 6 figures. An error in the first version
has been corrected, and references update
Higher Twist Contributions To R-Hadron Phenomenology In The Light Gluino Scenario
The open light gluino window allows non-trivial higher twist gluino
contributions to the proton wave function. Using a two-component model
originally developed for charm hadroproduction, higher twist intrinsic gluino
contributions to final state R-hadron formation are shown to enhance leading
twist production in the forward region. We calculate R-hadron
production at GeV in pp, pBe, and pCu interactions with
light gluino masses of 1.2, 1.5, 3.5, and 5.0 GeV.Comment: 22 pages, 10 figures, revte
Studies of Prototype CsI(Tl) Crystal Scintillators for Low-Energy Neutrino Experiments
Crystal scintillators provide potential merits for the pursuit of low-energy
low-background experiments. A CsI(Tl) scintillating crystal detector is being
constructed to study low-energy neutrino physics at a nuclear reactor, while
projects are underway to adopt this technique for dark matter searches. The
choice of the geometrical parameters of the crystal modules, as well as the
optimization of the read-out scheme, are the results of an R&D program.
Crystals with 40 cm in length were developed. The detector requirements and the
achieved performance of the prototypes are presented. Future prospects for this
technique are discussed.Comment: 32 pages, 14 figure
Differential Cross Section for Higgs Boson Production Including All-Orders Soft Gluon Resummation
The transverse momentum distribution is computed for inclusive Higgs
boson production at the energy of the CERN Large Hadron Collider. We focus on
the dominant gluon-gluon subprocess in perturbative quantum chromodynamics and
incorporate contributions from the quark-gluon and quark-antiquark channels.
Using an impact-parameter -space formalism, we include all-orders
resummation of large logarithms associated with emission of soft gluons. Our
resummed results merge smoothly at large with the fixed-order
expectations in perturbative quantum chromodynamics, as they should, with no
need for a matching procedure. They show a high degree of stability with
respect to variation of parameters associated with the non-perturbative input
at low . We provide distributions for Higgs boson masses
from to 200 GeV. The average transverse momentum at zero rapidity
grows approximately linearly with mass of the Higgs boson over the range ~GeV. We provide analogous results
for boson production, for which we compute GeV. The
harder transverse momentum distribution for the Higgs boson arises because
there is more soft gluon radiation in Higgs boson production than in
production.Comment: 42 pages, latex, 26 figures. All figures replaced. Some changes in
wording. Published in Phys. Rev. D67, 034026 (2003
A Quantitative Model of Energy Release and Heating by Time-dependent, Localized Reconnection in a Flare with a Thermal Loop-top X-ray Source
We present a quantitative model of the magnetic energy stored and then
released through magnetic reconnection for a flare on 26 Feb 2004. This flare,
well observed by RHESSI and TRACE, shows evidence of non-thermal electrons only
for a brief, early phase. Throughout the main period of energy release there is
a super-hot (T>30 MK) plasma emitting thermal bremsstrahlung atop the flare
loops. Our model describes the heating and compression of such a source by
localized, transient magnetic reconnection. It is a three-dimensional
generalization of the Petschek model whereby Alfven-speed retraction following
reconnection drives supersonic inflows parallel to the field lines, which form
shocks heating, compressing, and confining a loop-top plasma plug. The
confining inflows provide longer life than a freely-expanding or
conductively-cooling plasma of similar size and temperature. Superposition of
successive transient episodes of localized reconnection across a current sheet
produces an apparently persistent, localized source of high-temperature
emission. The temperature of the source decreases smoothly on a time scale
consistent with observations, far longer than the cooling time of a single
plug. Built from a disordered collection of small plugs, the source need not
have the coherent jet-like structure predicted by steady-state reconnection
models. This new model predicts temperatures and emission measure consistent
with the observations of 26 Feb 2004. Furthermore, the total energy released by
the flare is found to be roughly consistent with that predicted by the model.
Only a small fraction of the energy released appears in the super-hot source at
any one time, but roughly a quarter of the flare energy is thermalized by the
reconnection shocks over the course of the flare. All energy is presumed to
ultimately appear in the lower-temperature T<20 MK, post-flare loops
Magnetism of small V clusters embedded in a Cu fcc matrix: an ab initio study
We present extensive first principles density functional theory (DFT)
calculations dedicated to analyze the magnetic and electronic properties of
small V clusters (n=1,2,3,4,5,6) embedded in a Cu fcc matrix. We consider
different cluster structures such as: i) a single V impurity, ii) several
V dimers having different interatomic distance and varying local atomic
environment, iii) V and iv) V clusters for which we assume compact
as well as 2- and 1-dimensional atomic configurations and finally, in the case
of the v) V and vi) V structures we consider a square pyramid and a
square bipyramid together with linear arrays, respectively. In all cases, the V
atoms are embedded as substitutional impurities in the Cu network. In general,
and as in the free standing case, we have found that the V clusters tend to
form compact atomic arrays within the cooper matrix. Our calculated non
spin-polarized density of states at the V sites shows a complex peaked
structure around the Fermi level that strongly changes as a function of both
the interatomic distance and local atomic environment, a result that
anticipates a non trivial magnetic behavior. In fact, our DFT calculations
reveal, in each one of our clusters systems, the existence of different
magnetic solutions (ferromagnetic, ferrimagnetic, and antiferromagnetic) with
very small energy differences among them, a result that could lead to the
existence of complex finite-temperature magnetic properties. Finally, we
compare our results with recent experimental measurements.Comment: 7 pages and 4 figure
Global QCD Analysis and the CTEQ Parton Distributions
The CTEQ program for the determination of parton distributions through a
global QCD analysis of data for various hard scattering processes is fully
described. A new set of distributions, CTEQ3, incorporating several new types
of data is reported and compared to the two previous sets of CTEQ
distributions. Comparison with current data is discussed in some detail. The
remaining uncertainties in the parton distributions and methods to further
reduce them are assessed. Comparisons with the results of other global analyses
are also presented.Comment: (Change in Latex style only: 2up style removed since many don't have
it.) 35 pages, 23 figures separately submitted as uuencoded compressed
ps-file; Michigan State Report # MSU-HEP/41024 and CTEQ 40
Fractal Reconnection in Solar and Stellar Environments
Recent space based observations of the Sun revealed that magnetic
reconnection is ubiquitous in the solar atmosphere, ranging from small scale
reconnection (observed as nanoflares) to large scale one (observed as long
duration flares or giant arcades). Often the magnetic reconnection events are
associated with mass ejections or jets, which seem to be closely related to
multiple plasmoid ejections from fractal current sheet. The bursty radio and
hard X-ray emissions from flares also suggest the fractal reconnection and
associated particle acceleration. We shall discuss recent observations and
theories related to the plasmoid-induced-reconnection and the fractal
reconnection in solar flares, and their implication to reconnection physics and
particle acceleration. Recent findings of many superflares on solar type stars
that has extended the applicability of the fractal reconnection model of solar
flares to much a wider parameter space suitable for stellar flares are also
discussed.Comment: Invited chapter to appear in "Magnetic Reconnection: Concepts and
Applications", Springer-Verlag, W. D. Gonzalez and E. N. Parker, eds. (2016),
33 pages, 18 figure
- …
