41 research outputs found

    Fractal Dimensionof the El Salvador Earthquake (2001) time Series

    Full text link
    We have estimated multifractal spectrum of the El Salvador earthquake signal recorded at different locations.Comment: multifractal analysi

    A multifractal random walk

    Full text link
    We introduce a class of multifractal processes, referred to as Multifractal Random Walks (MRWs). To our knowledge, it is the first multifractal processes with continuous dilation invariance properties and stationary increments. MRWs are very attractive alternative processes to classical cascade-like multifractal models since they do not involve any particular scale ratio. The MRWs are indexed by few parameters that are shown to control in a very direct way the multifractal spectrum and the correlation structure of the increments. We briefly explain how, in the same way, one can build stationary multifractal processes or positive random measures.Comment: 5 pages, 4 figures, uses RevTe

    Multifractal stationary random measures and multifractal random walks with log-infinitely divisible scaling laws

    Full text link
    We define a large class of continuous time multifractal random measures and processes with arbitrary log-infinitely divisible exact or asymptotic scaling law. These processes generalize within a unified framework both the recently defined log-normal Multifractal Random Walk (MRW) [Bacry-Delour-Muzy] and the log-Poisson "product of cynlindrical pulses" [Barral-Mandelbrot]. Our construction is based on some ``continuous stochastic multiplication'' from coarse to fine scales that can be seen as a continuous interpolation of discrete multiplicative cascades. We prove the stochastic convergence of the defined processes and study their main statistical properties. The question of genericity (universality) of limit multifractal processes is addressed within this new framework. We finally provide some methods for numerical simulations and discuss some specific examples.Comment: 24 pages, 4 figure

    A Multifractal Analysis of Asian Foreign Exchange Markets

    Full text link
    We analyze the multifractal spectra of daily foreign exchange rates for Japan, Hong-Kong, Korea, and Thailand with respect to the United States Dollar from 1991 to 2005. We find that the return time series show multifractal spectrum features for all four cases. To observe the effect of the Asian currency crisis, we also estimate the multifractal spectra of limited series before and after the crisis. We find that the Korean and Thai foreign exchange markets experienced a significant increase in multifractality compared to Hong-Kong and Japan. We also show that the multifractality is stronge related to the presence of high values of returns in the series

    Accounting for risk of non linear portfolios: a novel Fourier approach

    Full text link
    The presence of non linear instruments is responsible for the emergence of non Gaussian features in the price changes distribution of realistic portfolios, even for Normally distributed risk factors. This is especially true for the benchmark Delta Gamma Normal model, which in general exhibits exponentially damped power law tails. We show how the knowledge of the model characteristic function leads to Fourier representations for two standard risk measures, the Value at Risk and the Expected Shortfall, and for their sensitivities with respect to the model parameters. We detail the numerical implementation of our formulae and we emphasizes the reliability and efficiency of our results in comparison with Monte Carlo simulation.Comment: 10 pages, 12 figures. Final version accepted for publication on Eur. Phys. J.

    An optimized algorithm for the evaluation of local singularity exponents in digital signals

    Get PDF
    International audienceRecent works show that the determination of singularity exponents in images can be useful to assess their information content, and in some cases they can cast additional information about underlying physical processes. However, the concept of singularity exponent is associated to differential calculus and thus cannot be easily translated to a digital context, even using wavelets. In this work we show that a recently patented algorithm allows obtaining precise, meaningful values of singularity exponents at every point in the image by the use of a discretized combinatorial mask, which is an extension of a particular wavelet basis. This mask is defined under the hypothesis that singularity exponents are a measure not only of the degree of regularity of the image, but also of the reconstructibility of a signal from their points

    Methods for Characterising Microphysical Processes in Plasmas

    Full text link

    Log-Infinitely Divisible Multifractal Processes

    No full text

    Experimental Analysis of Self-Similarity and Random Cascade Processes: Application to Fully Developed Turbulence Data

    No full text
    In the context of fully developed turbulence, Castaing et al. [10] have recently advocated a description of a random cascade process in terms of a kernel Gaa(x)G_{aa'} (x) that characterizes the nature of the cascade when going from a scale aa' to a finer scale aa. We elaborate on a method to estimating, directly from experimental data, the shape of GaaG_{aa'} for all scales aa and aa'. We apply this method to turbulent velocity data and we show that it provides very instructive informations about the soundness of various phenomenological models for the intermittency character of turbulent flows

    Intermittency of 1D velocity spatial profiles in turbulence: a magnitude cumulant analysis

    No full text
    PACS. 47.27.Eq Turbulence simulation and modeling – 02.50.-r Probability theory, stochastic processes, and statistics – 47.27.Jv High-Reynolds-number turbulence – 47.53.+n Fractals,
    corecore