5 research outputs found

    Autoantibodies against type I IFNs in patients with life-threatening COVID-19

    Get PDF
    Interindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-w (IFN-w) (13 patients), against the 13 types of IFN-a (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men

    First-line antiretroviral therapy with a protease inhibitor versus non-nucleoside reverse transcriptase inhibitor and switch at higher versus low viral load in HIV-infected children: An open-label, randomised phase 2/3 trial

    No full text
    Background: Children with HIV will be on antiretroviral therapy (ART) longer than adults, and therefore the durability of first-line ART and timing of switch to second-line are key questions. We assess the long-term outcome of protease inhibitor and non-nucleoside reverse transcriptase inhibitor (NNRTI) first-line ART and viral load switch criteria in children. Methods: In a randomised open-label factorial trial, we compared effectiveness of two nucleoside reverse transcriptase inhibitors (NRTIs) plus a protease inhibitor versus two NRTIs plus an NNRTI and of switch to second-line ART at a viral load of 1000 copies per mL versus 30 000 copies per mL in previously untreated children infected with HIV from Europe and North and South America. Random assignment was by computer-generated sequentially numbered lists stratified by age, region, and by exposure to perinatal ART. Primary outcome was change in viral load between baseline and 4 years. Analysis was by intention to treat, which we defined as all patients that started treatment. This study is registered with ISRCTN, number ISRCTN73318385. Findings: Between Sept 25, 2002, and Sept 7, 2005, 266 children (median age 6\ub75 years; IQR 2\ub78-12\ub79) were randomly assigned treatment regimens: 66 to receive protease inhibitor and switch to second-line at 1000 copies per mL (PI-low), 65 protease inhibitor and switch at 30 000 copies per mL (PI-higher), 68 NNRTI and switch at 1000 copies per mL (NNRTI-low), and 67 NNRTI and switch at 30 000 copies per mL (NNRTI-higher). Median follow-up was 5\ub70 years (IQR 4\ub72-6\ub70) and 188 (71%) children were on first-line ART at trial end. At 4 years, mean reductions in viral load were -3\ub716 log10copies per mL for protease inhibitors versus -3\ub731 log10copies per mL for NNRTIs (difference -0\ub715 log10copies per mL, 95% CI -0\ub741 to 0\ub711; p=0\ub726), and -3\ub726 log10copies per mL for switching at the low versus -3\ub720 log10copies per mL for switching at the higher threshold (difference 0\ub706 log10copies per mL, 95% CI -0\ub720 to 0\ub732; p=0\ub756). Protease inhibitor resistance was uncommon and there was no increase in NRTI resistance in the PI-higher compared with the PI-low group. NNRTI resistance was selected early, and about 10% more children accumulated NRTI mutations in the NNRTI-higher than the NNRTI-low group. Nine children had new CDC stage-C events and 60 had grade 3/4 adverse events; both were balanced across randomised groups. Interpretation: Good long-term outcomes were achieved with all treatments strategies. Delayed switching of protease-inhibitor-based ART might be reasonable where future drug options are limited, because the risk of selecting for NRTI and protease-inhibitor resistance is low. Funding: Paediatric European Network for Treatment of AIDS (PENTA) and Pediatric AIDS Clinical Trials Group (PACTG/IMPAACT). \ua9 2011 Elsevier Ltd
    corecore