333 research outputs found

    Management effects on phosphorus transformation and implications for soil test recommendations

    Get PDF
    Non-Peer ReviewedCrop rotations and fertilizer application on long-term rotation plots at Lethbridge and Breton have dramatically affected most soil phosphorus (P) fractions. At the Lethbridge site, soil cultivation has reduced organic P (Po) levels as a result of mineralization. This has caused a significant increase in resin extractable inorganic P (Pi; most biologically available), sodium bicarbonate extractable Pi (sorbed to soil surfaces), and sodium hydroxide extractable Pi (more strongly bound to Al and Fe compounds) levels. In non-fertilized treatments, continuous wheat (CW) resulted in greater P draw-down of all labile P fractions than in wheat-wheat-fallow (WWF) and wheat-fallow (WF) rotations. The addition of P fertilizer has significantly increased Resin-Pi, Bicarb-Pi and NaOH-Pi fractions. The addition of N fertilizer has resulted in increased Bicarb-Po and NaOH-Po levels in the CW, WF, and WWF rotations. At the Breton site, continuously cropped treatments, which had not received fertilizer, resulted in greater P draw-down of all P fractions except Residual-F. Addition of fertilizer had a significant effect on all P fractions (except NaOH-Po). The added Pin the fertilizer treatments positively affected the Pi fractions and the N in the fertilizer treatment positively affected the Po fractions. Bicarb-Po levels were found to be negatively· affected by soil pH. Finally, cropping without using phosphate fertilizer has resulted in a 30 to 41 % decline in Total-P in the Breton plots. A growth chamber study was conducted to compare four routine soil test P methods with plant uptake of P. Wheat and canola were each grown in eight soils from the Lethbridge and Breton plots with different pedogenic, crop rotation and fertilizer histories. Results of the study confirm that one calibration curve to predict fertilizer P requirements for a wide range of soils and crops is virtually impossible. Future soil tests will combine a chemical extractant with a computer model prediction of Po mineralization. Much more information is needed on root rhizosphere dynamics

    Tolerance of chronic hypercapnia by the European eel Anguilla anguilla

    Get PDF
    European eels were exposed for 6 weeks to water CO2 partial pressures (PCO\ub7) from ambient (approx.0.8\ub7mmHg), through 15\ub11\ub7mmHg and 30\ub11\ub7mmHg to 45\ub11\ub7mmHg in water with a total hardness of240\ub7mg\ub7l\u20131 as CaCO3, pH 8.2, at 23\ub11\ub0C. Arterial plasma PCO\ub7 equilibrated at approximately 2\ub7mmHg above water PCO\ub7 in all groups, and plasma bicarbonate accumulated up to 72\ub7mmol\ub7l\u20131 in the group at a water PCO\ub7 of 45\ub7mmHg. This was associated with an equimolar loss of plasma Cl\u2013, which declined to 71\ub7mmol\ub7l\u20131 at the highest water PCO\ub7. Despite this, extracellular acid\u2013base compensation was incomplete; all hypercapnic groups tolerated chronic extracellular acidoses and reductions in arterial blood O2 content (CaO\ub7), of progressive severity with increasing PCO\ub7. All hypercapnic eels, however, regulated the intracellular pH of heart and white muscle to the same levels as normocapnic animals. Hypercapnia had no effect on such indicators of stress as plasma catecholamine or cortisol levels, plasma osmolality or standard metabolic rate. Furthermore, although CaO\ub7 was reduced by approximately 50% at the highest PCO\ub7, there was no effect of hypercapnia on the eels\u2019 tolerance of hypoxia, aerobic metabolic scope or sustained swimming performance. The results indicate that, at the levels tested, chronic hypercapnia was not a physiological stress for the eel, which can tolerate extracellular acidosis and extremely low Cl\u2013 levels while compensating tissue intracellular pH, and which can meet the O2 requirements of routine and active metabolism despite profound hypoxaemia

    Residual disease and HPV persistence after cryotherapy for cervical intraepithelial neoplasia grade 2/3 in HIV positive women in Kenya

    Get PDF
    Objective: To assess residual cervical intraepithelial neoplasia (CIN) 2/3 disease and clearance of high-risk (hr) human papillomavirus (HPV) infections at 6 months after cryotherapy among HIV-positive women. Design: Follow-up study. Methods: 79 HIV-positive women received cryotherapy for CIN2/3 in Nairobi, Kenya, and underwent conventional cytology 6 months later. Biopsies were performed on high grade cytological lesions and hrHPV was assessed before (cervical cells and biopsy) and after cryotherapy (cells). Results: At 6 months after cryotherapy CIN2/3 had been eliminated in 61 women (77.2%; 95% Confidence Interval, (CI):66.4–85.9). 18 women (22.8%) had residual CIN2/3, and all these women had hrHPV at baseline. CD4 count and duration of combination antiretroviral therapy (cART) were not associated with residual CIN2/3. CIN3 instead of CIN2 was the only significant risk factor for residual disease (odds ratio, OR vs CIN2 = 4.3; 95% CI: 1.2–15.0) among hrHPV-positive women after adjustment for age and HPV16 infection. Persistence of hrHPV types previously detected in biopsies was found in 77.5% of women and was associated with residual CIN2/3 (OR = 8.1, 95% CI: 0.9–70). The sensitivity, specificity, and negative predictive value of hrHPV test in detecting residual CIN2/3 were 0.94, 0.36, and 0.96 respectively. Conclusions: Nearly one quarter of HIV-positive women had residual CIN2/3 disease at 6 months after cryotherapy, and the majority had persistent hrHPV. CD4 count and cART use were not associated with residual disease or hrHPV persistence. The value of hrHPV testing in the detection of residual CIN2/3 was hampered by a low specificity

    Cyclotron effective masses in layered metals

    Get PDF
    Many layered metals such as quasi-two-dimensional organic molecular crystals show properties consistent with a Fermi liquid description at low temperatures. The effective masses extracted from the temperature dependence of the magnetic oscillations observed in these materials are in the range, m^*_c/m_e \sim 1-7, suggesting that these systems are strongly correlated. However, the ratio m^*_c/m_e contains both the renormalization due to the electron-electron interaction and the periodic potential of the lattice. We show that for any quasi-two-dimensional band structure, the cyclotron mass is proportional to the density of states at the Fermi energy. Due to Luttinger's theorem, this result is also valid in the presence of interactions. We then evaluate m_c for several model band structures for the \beta, \kappa, and \theta families of (BEDT-TTF)_2X, where BEDT-TTF is bis-(ethylenedithia-tetrathiafulvalene) and X is an anion. We find that for \kappa-(BEDT-TTF)_2X, the cyclotron mass of the \beta-orbit, m^{*\beta}_c, is close to 2 m^{*\alpha}_c, where m^{*\alpha}_c is the effective mass of the \alpha- orbit. This result is fairly insensitive to the band structure details. For a wide range of materials we compare values of the cyclotron mass deduced from band structure calculations to values deduced from measurements of magnetic oscillations and the specific heat coefficient.Comment: 12 pages, 3 eps figure

    Non-destructive, dynamic detectors for Bose-Einstein condensates

    Full text link
    We propose and analyze a series of non-destructive, dynamic detectors for Bose-Einstein condensates based on photo-detectors operating at the shot noise limit. These detectors are compatible with real time feedback to the condensate. The signal to noise ratio of different detection schemes are compared subject to the constraint of minimal heating due to photon absorption and spontaneous emission. This constraint leads to different optimal operating points for interference-based schemes. We find the somewhat counter-intuitive result that without the presence of a cavity, interferometry causes as much destruction as absorption for optically thin clouds. For optically thick clouds, cavity-free interferometry is superior to absorption, but it still cannot be made arbitrarily non-destructive . We propose a cavity-based measurement of atomic density which can in principle be made arbitrarily non-destructive for a given signal to noise ratio

    Cosmic-ray acceleration in supernova remnants: non-linear theory revised

    Full text link
    A rapidly growing amount of evidences, mostly coming from the recent gamma-ray observations of Galactic supernova remnants (SNRs), is seriously challenging our understanding of how particles are accelerated at fast shocks. The cosmic-ray (CR) spectra required to account for the observed phenomenology are in fact as steep as E2.2E2.4E^{-2.2}--E^{-2.4}, i.e., steeper than the test-particle prediction of first-order Fermi acceleration, and significantly steeper than what expected in a more refined non-linear theory of diffusive shock acceleration. By accounting for the dynamical back-reaction of the non-thermal particles, such a theory in fact predicts that the more efficient the particle acceleration, the flatter the CR spectrum. In this work we put forward a self-consistent scenario in which the account for the magnetic field amplification induced by CR streaming produces the conditions for reversing such a trend, allowing --- at the same time --- for rather steep spectra and CR acceleration efficiencies (about 20%) consistent with the hypothesis that SNRs are the sources of Galactic CRs. In particular, we quantitatively work out the details of instantaneous and cumulative CR spectra during the evolution of a typical SNR, also stressing the implications of the observed levels of magnetization on both the expected maximum energy and the predicted CR acceleration efficiency. The latter naturally turns out to saturate around 10-30%, almost independently of the fraction of particles injected into the acceleration process as long as this fraction is larger than about 10410^{-4}.Comment: 24 pages, 5 figures, accepted for publication in JCA

    A Quantitative Model of Energy Release and Heating by Time-dependent, Localized Reconnection in a Flare with a Thermal Loop-top X-ray Source

    Full text link
    We present a quantitative model of the magnetic energy stored and then released through magnetic reconnection for a flare on 26 Feb 2004. This flare, well observed by RHESSI and TRACE, shows evidence of non-thermal electrons only for a brief, early phase. Throughout the main period of energy release there is a super-hot (T>30 MK) plasma emitting thermal bremsstrahlung atop the flare loops. Our model describes the heating and compression of such a source by localized, transient magnetic reconnection. It is a three-dimensional generalization of the Petschek model whereby Alfven-speed retraction following reconnection drives supersonic inflows parallel to the field lines, which form shocks heating, compressing, and confining a loop-top plasma plug. The confining inflows provide longer life than a freely-expanding or conductively-cooling plasma of similar size and temperature. Superposition of successive transient episodes of localized reconnection across a current sheet produces an apparently persistent, localized source of high-temperature emission. The temperature of the source decreases smoothly on a time scale consistent with observations, far longer than the cooling time of a single plug. Built from a disordered collection of small plugs, the source need not have the coherent jet-like structure predicted by steady-state reconnection models. This new model predicts temperatures and emission measure consistent with the observations of 26 Feb 2004. Furthermore, the total energy released by the flare is found to be roughly consistent with that predicted by the model. Only a small fraction of the energy released appears in the super-hot source at any one time, but roughly a quarter of the flare energy is thermalized by the reconnection shocks over the course of the flare. All energy is presumed to ultimately appear in the lower-temperature T<20 MK, post-flare loops

    Reflection and Ducting of Gravity Waves Inside the Sun

    Get PDF
    Internal gravity waves excited by overshoot at the bottom of the convection zone can be influenced by rotation and by the strong toroidal magnetic field that is likely to be present in the solar tachocline. Using a simple Cartesian model, we show how waves with a vertical component of propagation can be reflected when traveling through a layer containing a horizontal magnetic field with a strength that varies with depth. This interaction can prevent a portion of the downward-traveling wave energy flux from reaching the deep solar interior. If a highly reflecting magnetized layer is located some distance below the convection zone base, a duct or wave guide can be set up, wherein vertical propagation is restricted by successive reflections at the upper and lower boundaries. The presence of both upward- and downward-traveling disturbances inside the duct leads to the existence of a set of horizontally propagating modes that have significantly enhanced amplitudes. We point out that the helical structure of these waves makes them capable of generating an alpha-effect, and briefly consider the possibility that propagation in a shear of sufficient strength could lead to instability, the result of wave growth due to over-reflection.Comment: 23 pages, 5 figures. Accepted for publication in Solar Physic
    corecore