2,503 research outputs found

    A geometric approach to time evolution operators of Lie quantum systems

    Full text link
    Lie systems in Quantum Mechanics are studied from a geometric point of view. In particular, we develop methods to obtain time evolution operators of time-dependent Schrodinger equations of Lie type and we show how these methods explain certain ad hoc methods used in previous papers in order to obtain exact solutions. Finally, several instances of time-dependent quadratic Hamiltonian are solved.Comment: Accepted for publication in the International Journal of Theoretical Physic

    Evidence for SU(3) symmetry breaking from hyperon production

    Get PDF
    We examine the SU(3) symmetry breaking in hyperon semileptonic decays (HSD) by considering two typical sets of quark contributions to the spin content of the octet baryons: Set-1 with SU(3) flavor symmetry and Set-2 with SU(3) flavor symmetry breaking in HSD. The quark distributions of the octet baryons are calculated with a successful statistical model. Using an approximate relation between the quark fragmentation functions and the quark distributions, we predict polarizations of the octet baryons produced in e+ee^+e^- annihilation and semi-inclusive deeply lepton-nucleon scattering in order to reveal the SU(3) symmetry breaking effect on the spin structure of the octet baryons. We find that the SU(3) symmetry breaking significantly affects the hyperon polarization. The available experimental data on the Λ\Lambda polarization seem to favor the theoretical predictions with SU(3) symmetry breaking. We conclude that there is a possibility to get a collateral evidence for SU(3) symmetry breaking from hyperon production. The theoretical errors for our predictions are discussed.Comment: 3 tables, 14 figure

    Effective Two Higgs Doublets in Nonminimal Supersymmetric Models

    Full text link
    The Higgs sectors of supersymmetric extensions of the Standard Model have two doublets in the minimal version (MSSM), and two doublets plus a singlet in two others: with (UMSSM) and without (NMSSM) an extra U(1)'. A very concise comparison of these three models is possible if we assume that the singlet has a somewhat larger breaking scale compared to the electroweak scale. In that case, the UMSSM and the NMSSM become effectively two-Higgs-doublet models (THDM), like the MSSM. As expected, the mass of the lightest CP-even neutral Higgs boson has an upper bound in each case. We find that in the NMSSM, this bound exceeds not very much that of the MSSM, unless tan(beta) is near one. However, the upper bound in the UMSSM may be substantially enhanced.Comment: 8 pages, 1 table, 3 figure

    Electroweak Corrections to the Charged Higgs Boson Decay into Chargino and Neutralino

    Full text link
    The electroweak corrections to the partial widths of the H+χ~i+χ~j0(i=1,j=1,2)H^+ \to \tilde{\chi}^+_i \tilde{\chi}_j^0 (i=1,j=1,2) decays including one-loop diagrams of the third generation quarks and squarks, are investigated within the Supersymmetric Standard Model. The relative corrections can reach the values about 10%, therefore they should be taken into account for the precise experimental measurement at future colliders.Comment: 21 pages, 6 eps figures, 1 Latex fil

    Constraint methods for determining pathways and free energy of activated processes

    Full text link
    Activated processes from chemical reactions up to conformational transitions of large biomolecules are hampered by barriers which are overcome only by the input of some free energy of activation. Hence, the characteristic and rate-determining barrier regions are not sufficiently sampled by usual simulation techniques. Constraints on a reaction coordinate r have turned out to be a suitable means to explore difficult pathways without changing potential function, energy or temperature. For a dense sequence of values of r, the corresponding sequence of simulations provides a pathway for the process. As only one coordinate among thousands is fixed during each simulation, the pathway essentially reflects the system's internal dynamics. From mean forces the free energy profile can be calculated to obtain reaction rates and insight in the reaction mechanism. In the last decade, theoretical tools and computing capacity have been developed to a degree where simulations give impressive qualitative insight in the processes at quantitative agreement with experiments. Here, we give an introduction to reaction pathways and coordinates, and develop the theory of free energy as the potential of mean force. We clarify the connection between mean force and constraint force which is the central quantity evaluated, and discuss the mass metric tensor correction. Well-behaved coordinates without tensor correction are considered. We discuss the theoretical background and practical implementation on the example of the reaction coordinate of targeted molecular dynamics simulation. Finally, we compare applications of constraint methods and other techniques developed for the same purpose, and discuss the limits of the approach

    Regio- and stereoselective synthesis of acetallic tetrahydropyrans as building blocks for natural products preparation, via a tandem [4+3]-cycloaddition/ozonolysis Process

    Get PDF
    A highly versatile synthetic pathway is presented for the preparation of polyfunctionalized acetallic tetrahydropyrans from conveniently substituted 1-methoxy-8-oxabicyclo[3.2.1]- oct-6-en-3-one derivatives, as intermediates in the total synthesis of natural and unnatural products with structural, functional and/or biological importance. This synthetic methodology involves two key steps: a [4 + 3] cycloaddition reaction between an oxyallyl cation and 2-methoxyfuran as a diene, followed by oxidative and/or reductive ozonolysis of the cycloheptenone subunit. This sequence renders polyfunctionalized 2-methoxytetrahydropyranic products capable of being easily opened under acidic conditions. The key steps, cycloaddition and subsequent ozonolysis were both fully studied under different reaction conditions and using several substrates in order to optimize yields and stereoselectivities and to study the scope of the methodology. It is noteworthy that both reactions proceed with high diastereoselectivity and, in the case of the oxidative ozonolysis, outstanding regioselectivity as well. A chemical library of 14 polyfunctionalized tetrahydrofurans, having five or seven stereocenters, has been prepared using the detailed approach

    TeV-scale seesaw from a multi-Higgs model

    Full text link
    We suggest new simple model of generating tiny neutrino masses through a TeV-scale seesaw mechanism without requiring tiny Yukawa couplings. This model is a simple extension of the standard model by introducing extra one Higgs singlet, and one Higgs doublet with a tiny vacuum expectation value. Experimental constraints, electroweak precision data and no large flavor changing neutral currents, are satisfied since the extra doublet only has a Yukawa interaction with lepton doublets and right-handed neutrinos, and their masses are heavy of order a TeV-scale. Since active light neutrinos are Majorana particles, this model predicts a neutrinoless double beta decay.Comment: 21 pages, 8 figure

    Single gluino production in the R-parity lepton number violating MSSM at the LHC

    Get PDF
    We examine the RpR_{p}-violating signal of single gluino production associated with a charged lepton or neutrino at the large hadron collider (LHC), in the model of R-parity relaxed supersymmetric model. If the parameters in the /Rp{\rlap/R}_p supersymmetric interactions are not too small, and the mass of gluino is considered in the range from several GeV (as the Lightest Supersymmetric Particle) to 800 GeV, the cross section of the single gluino production via Drell-Yan processes can be in the order of 10210310^2 \sim 10^3 femto barn, and that via gluon fusion in the order of 10110310^{-1} \sim 10^3 femto barn. If the gluino decay can be well detected in the CERN LHC, this process provides a prospective way to probe supersymmetry and RpR_p violation.Comment: LaTex, 22 pages, 5 EPS file

    Isospin breaking in the vector current of the nucleon

    Get PDF
    Extraction of the nucleon's strange form factors from experimental data requires a quantitative understanding of the unavoidable contamination from isospin violation. A number of authors have addressed this issue during the past decade, and their work is reviewed here. The predictions from early models are largely consistent with recent results that rely as much as possible on input from QCD symmetries and related experimental data. The resulting bounds on isospin violation are sufficiently precise to be of value to on-going experimental and theoretical studies of the nucleon's strange form factors.Comment: 5 pages, 3 figures. Presented at the International Workshop "From Parity Violation to Hadronic Structure and more...", Milos, Greece, 16-20 May 2006. Version 2 is only to update Refs. [21] and [25

    Relativistic Random-Phase Approximation with density-dependent meson-nucleon couplings

    Get PDF
    The matrix equations of the relativistic random-phase approximation (RRPA) are derived for an effective Lagrangian characterized by density-dependent meson-nucleon vertex functions. The explicit density dependence of the meson-nucleon couplings introduces rearrangement terms in the residual two-body interaction, that are essential for a quantitative description of excited states. Illustrative calculations of the isoscalar monopole, isovector dipole and isoscalar quadrupole response of 208^{208}Pb, are performed in the fully self-consistent RRPA framework, based on effective interactions with a phenomenological density dependence adjusted to nuclear matter and ground-state properties of spherical nuclei. The comparison of the RRPA results on multipole giant resonances with experimental data constrains the parameters that characterize the isoscalar and isovector channel of the density-dependent effective interactions.Comment: RevTeX, 8 eps figures, submitted to Phys. Rev.
    corecore