594 research outputs found
Sequential vector and axial-vector meson exchange and chiral loops in radiative phi decay
We study the radiative decay into and taking into account mechanisms in which there are two sequential
vector-vector-pseudoscalar or axial-vector--vector--pseudoscalar steps followed
by the coupling of a vector meson to the photon, considering the final state
interaction of the two mesons. There are other mechanisms in which two kaons
are produced through the same sequential mechanisms or from decay into
two kaons and then undergo final state interaction leading to the final pair of
pions or , this latter mechanism being the leading one. The results
of the parameter free theory, together with the theoretical uncertainties, are
compared with the latest experimental results of KLOE at Frascati.Comment: 28 pages, 20 figure
In-utero exposure to the popular ‘recreational’ drugs MDMA (Ecstasy) and Methamphetamine (Ice, Crystal): preliminary findings
Review of preliminary evidence of the impact of MDMA and Methamphetamine on the developing infan
Higher meson resonances in and
The role of higher meson resonances with spin 1 and 2 is investigated
quantitatively in the decay processes of and
. Among the higher resonances, we find that the
tensor meson can give a nontrivial contribution especially to the
decay process. When the contribution is
combined with the processes involving the vector and scalar meson intermediate
states, a good agreement with the recent measurements is achieved for both
decays. The effect of the is found to be sizable at the
intermediate photon energies and may be verified by precise measurements of the
recoil photon spectrum of the decay. The
dependence of the decay widths on various models for the - mixing
in the literature is also investigated.Comment: 16 pages, REVTeX, 6 figures, revised version, to appear in Phys. Rev.
A comparison of precipitation and filtration-based SARS-CoV-2 recovery methods and the influence of temperature, turbidity, and surfactant load in urban wastewater
Wastewater-based epidemiology (WBE) has become a complimentary surveillance tool during the SARS-CoV-2 pandemic. Viral concentration methods from wastewater are still being optimised and compared, whilst viral recovery under different wastewater characteristics and storage temperatures remains poorly understood. Using urban wastewater samples, we tested three viral concentration methods; polyethylene glycol precipitation (PEG), ammonium sulphate precipitation (AS), and CP select™ InnovaPrep® (IP) ultrafiltration. We found no major difference in SARS-CoV-2 and faecal indicator virus (crAssphage) recovery from wastewater samples (n = 46) using these methods, PEG slightly (albeit non-significantly), outperformed AS and IP for SARS-CoV-2 detection, as a higher genome copies per litre (gc/l) was recorded for a larger proportion of samples. Next generation sequencing of 8 paired samples revealed non-significant differences in the quality of data between AS and IP, though IP data quality was slightly better and less variable. A controlled experiment assessed the impact of wastewater suspended solids (turbidity; 0–400 NTU), surfactant load (0–200 mg/l), and storage temperature (5–20 °C) on viral recovery using the AS and IP methods. SARS-CoV-2 recoveries were >20% with AS and 0.05), whilst surfactant and storage temperature combined were significant negative correlates (p < 0.001 and p < 0.05, respectively). In conclusion, our results show that choice of methodology had small effect on viral recovery of SARS-CoV-2 and crAssphage in wastewater samples within this study. In contrast, sample turbidity, storage temperature, and surfactant load did affect viral recovery, highlighting the need for careful consideration of the viral concentration methodology used when working with wastewater samples
Towards Solving QCD - The Transverse Zero Modes in Light-Cone Quantization
We formulate QCD in (d+1) dimensions using Dirac's front form with periodic
boundary conditions, that is, within Discretized Light-Cone Quantization. The
formalism is worked out in detail for SU(2) pure glue theory in (2+1)
dimensions which is approximated by restriction to the lowest {\it transverse}
momentum gluons. The dimensionally-reduced theory turns out to be SU(2) gauge
theory coupled to adjoint scalar matter in (1+1) dimensions. The scalar field
is the remnant of the transverse gluon. This field has modes of both non-zero
and zero {\it longitudinal} momentum. We categorize the types of zero modes
that occur into three classes, dynamical, topological, and constrained, each
well known in separate contexts. The equation for the constrained mode is
explicitly worked out. The Gauss law is rather simply resolved to extract
physical, namely color singlet states. The topological gauge mode is treated
according to two alternative scenarios related to the In the one, a spectrum is
found consistent with pure SU(2) gluons in (1+1) dimensions. In the other, the
gauge mode excitations are estimated and their role in the spectrum with
genuine Fock excitations is explored. A color singlet state is given which
satisfies Gauss' law. Its invariant mass is estimated and discussed in the
physical limit.Comment: LaTex document, 26 pages, one figure (obtainable by contacting
authors). To appear in Physical. Review
Global analysis of contact-dependent human-to-mouse intercellular mRNA and lncRNA transfer in cell culture
Full-length mRNAs transfer between adjacent mammalian cells via direct cell-to-cell connections called tunneling nanotubes (TNTs). However, the extent of mRNA transfer at the transcriptome-wide level (the 'transferome') is unknown. Here, we analyzed the transferome in an human-mouse cell co-culture model using RNA-sequencing. We found that mRNA transfer is non-selective, prevalent across the human transcriptome, and that the amount of transfer to mouse embryonic fibroblasts (MEFs) strongly correlates with the endogenous level of gene expression in donor human breast cancer cells. Typically, <1% of endogenous mRNAs undergo transfer. Non-selective, expression-dependent RNA transfer was further validated using synthetic reporters. RNA transfer appears contact-dependent via TNTs, as exemplified for several mRNAs. Notably, significant differential changes in the native MEF transcriptome were observed in response to co-culture, including the upregulation of multiple cancer and cancer-associated fibroblast-related genes and pathways. Together, these results lead us to suggest that TNT-mediated RNA transfer could be a phenomenon of physiological importance under both normal and pathogenic conditions
Discrete symmetries, invisible axion and lepton number symmetry in an economic 3-3-1 model
We show that Peccei-Quinn and lepton number symmetries can be a natural
outcome in a 3-3-1 model with right-handed neutrinos after imposing a Z_11 x
Z_2 symmetry. This symmetry is suitably accommodated in this model when we
augmented its spectrum by including merely one singlet scalar field. We work
out the breaking of the Peccei-Quinn symmetry, yielding the axion, and study
the phenomenological consequences. The main result of this work is that the
solution to the strong CP problem can be implemented in a natural way, implying
an invisible axion phenomenologically unconstrained, free of domain wall
formation and constituting a good candidate for the cold dark matter.Comment: 17 pages, Revtex
Quantum Monte Carlo study of the 3D attractive Hubbard model
We study the three-dimensional (3D) attractive Hubbard model by means of the
Determinant Quantum Monte Carlo method. This model is a prototype for the
description of the smooth crossover between BCS superconductivity and
Bose-Einstein condensation. By detailed finite-size scaling we extract the
finite-temperature phase diagram of the model. In particular, we interpret the
observed behavior according to a scenario of two fundamental temperature
scales; T* associated with Cooper pair formation and Tc with condensation
(giving rise to long-range superconducting order). Our results also indicate
the presence of a recently conjectured phase transition hidden by the
superconducting state. A comparison with the 2D case is briefly discussed,
given its relevance for the physics of high-Tc cuprate superconductors.Comment: 4 pages, 4 Postscript figure
Recommended from our members
Liver Dysfunction and Phosphatidylinositol-3-Kinase Signalling in Early Sepsis: Experimental Studies in Rodent Models of Peritonitis
Background: Hepatic dysfunction and jaundice are traditionally viewed as late features of sepsis and portend poor outcomes. We hypothesized that changes in liver function occur early in the onset of sepsis, yet pass undetected by standard laboratory tests. Methods and Findings: In a long-term rat model of faecal peritonitis, biotransformation and hepatobiliary transport were impaired, depending on subsequent disease severity, as early as 6 h after peritoneal contamination. Phosphatidylinositol-3-kinase (PI3K) signalling was simultaneously induced at this time point. At 15 h there was hepatocellular accumulation of bilirubin, bile acids, and xenobiotics, with disturbed bile acid conjugation and drug metabolism. Cholestasis was preceded by disruption of the bile acid and organic anion transport machinery at the canalicular pole. Inhibitors of PI3K partially prevented cytokine-induced loss of villi in cultured HepG2 cells. Notably, mice lacking the PI3Kγ gene were protected against cholestasis and impaired bile acid conjugation. This was partially confirmed by an increase in plasma bile acids (e.g., chenodeoxycholic acid [CDCA] and taurodeoxycholic acid [TDCA]) observed in 48 patients on the day severe sepsis was diagnosed; unlike bilirubin (area under the receiver-operating curve: 0.59), these bile acids predicted 28-d mortality with high sensitivity and specificity (area under the receiver-operating curve: CDCA: 0.77; TDCA: 0.72; CDCA+TDCA: 0.87). Conclusions: Liver dysfunction is an early and commonplace event in the rat model of sepsis studied here; PI3K signalling seems to play a crucial role. All aspects of hepatic biotransformation are affected, with severity relating to subsequent prognosis. Detected changes significantly precede conventional markers and are reflected by early alterations in plasma bile acids. These observations carry important implications for the diagnosis of liver dysfunction and pharmacotherapy in the critically ill. Further clinical work is necessary to extend these concepts into clinical practice. Please see later in the article for the Editors' Summary
Upper critical field for underdoped high-T_c superconductors. Pseudogap and stripe--phase
We investigate the upper critical field in a stripe--phase and in the
presence of a phenomenological pseudogap. Our results indicate that the
formation of stripes affects the Landau orbits and results in an enhancement of
. On the other hand, phenomenologically introduced pseudogap leads to a
reduction of the upper critical field. This effect is of particular importance
when the magnitude of the gap is of the order of the superconducting transition
temperature. We have found that a suppression of the upper critical field takes
place also for the gap that originates from the charge--density waves.Comment: 7 pages, 5 figure
- …