838 research outputs found

    Quantum Breaking Time Scaling in the Superdiffusive Dynamics

    Full text link
    We show that the breaking time of quantum-classical correspondence depends on the type of kinetics and the dominant origin of stickiness. For sticky dynamics of quantum kicked rotor, when the hierarchical set of islands corresponds to the accelerator mode, we demonstrate by simulation that the breaking time scales as τ(1/)1/μ\tau_{\hbar} \sim (1/\hbar)^{1/\mu} with the transport exponent μ>1\mu > 1 that corresponds to superdiffusive dynamics. We discuss also other possibilities for the breaking time scaling and transition to the logarithmic one τln(1/)\tau_{\hbar} \sim \ln(1/\hbar) with respect to \hbar

    Economic and Market Analysis of CO2 Utilization Technologies – Focus on CO2 derived from North Dakota lignite

    Get PDF
    AbstractBased on information obtained about the technical aspects of the technologies, several challenges are expected to be faced by any potential CO2 utilization technologies intended for North Dakota lignite plants. The weather, alkaline content of lignite fly ash, and space limitations in the immediate vicinity of existing power plants are challenging hurdles to overcome. Currently, no CO2 utilization option is ready for implementation or integration with North Dakota power plants. Mineralization technologies suffer from the lack of a well-defined product and insufficient alkalinity in lignite fly ash. Algae and microalgae technologies are not economically feasible and will have weather- related challenges

    Superconductors with Magnetic Impurities: Instantons and Sub-gap States

    Full text link
    When subject to a weak magnetic impurity potential, the order parameter and quasi-particle energy gap of a bulk singlet superconductor are suppressed. According to the conventional mean-field theory of Abrikosov and Gor'kov, the integrity of the energy gap is maintained up to a critical concentration of magnetic impurities. In this paper, a field theoretic approach is developed to critically analyze the validity of the mean field theory. Using the supersymmetry technique we find a spatially homogeneous saddle-point that reproduces the Abrikosov-Gor'kov theory, and identify instanton contributions to the density of states that render the quasi-particle energy gap soft at any non-zero magnetic impurity concentration. The sub-gap states are associated with supersymmetry broken field configurations of the action. An analysis of fluctuations around these configurations shows how the underlying supersymmetry of the action is restored by zero modes. An estimate of the density of states is given for all dimensionalities. To illustrate the universality of the present scheme we apply the same method to study `gap fluctuations' in a normal quantum dot coupled to a superconducting terminal. Using the same instanton approach, we recover the universal result recently proposed by Vavilov et al. Finally, we emphasize the universality of the present scheme for the description of gap fluctuations in d-dimensional superconducting/normal structures.Comment: 18 pages, 9 eps figure

    Estimation of loan portfolio risk on the basis of Markov chain model

    Full text link
    A change of shares of credits portfolio is described by Markov chain with discrete time. A credit state is determined on as an accessory to some group of credits depending on presence of indebtedness and its terms. We use a model with discrete time and fix the system state through identical time intervals - once a month. It is obvious that the matrix of transitive probabilities is known incompletely. Various approaches to the matrix estimation are studied and methods of forecast the portfolio risk are proposed. The portfolio risk is set as a share of problematic loans. We propose a method to calculate necessary reserves on the base of the considered model. © 2013 IFIP International Federation for Information Processing.German Sci. Found. (DFG) Eur. Sci. Found. (ESF);Natl. Inst. Res. Comput. Sci. Control France (INRIA);DFG Research Center MATHEON;Weierstrass Institute for Applied Analysis and Stochastics (WIAS);European Patent Offic

    Universal Extra Dimensions and Kaluza Klein Bound States

    Get PDF
    We study the bound states of the Kaluza-Klein (KK) excitations of quarks in certain models of Universal Extra Dimensions. Such bound states may be detected at future lepton colliders in the cross section for the pair production of KK-quarks near threshold. For typical values of model parameters, we find that "KK-quarkonia" have widths in the 10 - 100 MeV range, and production cross sections of order a few picobarns for the lightest resonances. Two body decays of the constituent KK-quarks lead to distinctive experimental signatures. We point out that such KK resonances may be discovered before any of the higher KK modes.Comment: 21 pages LaTeX, 9 eps figure

    Perceptions of COVID-19 vaccines among healthcare assistants: A national survey

    Get PDF
    Background: Limited COVID-19 vaccination acceptance among healthcare assistants (HCAs) may adversely impact older adults, who are at increased risk for severe COVID-19 infections. Our study objective was to evaluate the perceptions of COVID-19 vaccine safety and efficacy in a sample of frontline HCAs, overall and by race and ethnicity. Methods: An online survey was conducted from December 2020 to January 2021 through national e-mail listserv and private Facebook page for the National Association of Health Care Assistants. Responses from 155 HCAs, including certified nursing assistants, home health aides, certified medical assistants, and certified medication technicians, were included. A 27-item survey asked questions about experiences and perceptions of COVID-19 vaccines, including how confident they were that COVID-19 vaccines are safe, effective, and adequately tested in people of color. Multivariable regression was used to identify associations with confidence in COVID-19 vaccines. Results: We analyzed data from 155 completed responses. Among respondents, 23.9% were black and 8.4% Latino/a. Most respondents worked in the nursing home setting (53.5%), followed by hospitals (12.9%), assisted living (11.6%), and home care (10.3%). Respondents expressed low levels of confidence in COVID-19 vaccines, with fewer than 40% expressing at least moderate confidence in safety (38.1%), effectiveness (31.0%), or adequate testing in people of color (27.1%). Non-white respondents reported lower levels of confidence in adequate testing of vaccines compared to white respondents. In bivariate and adjusted models, respondents who gave more favorable scores of organizational leadership at their workplace expressed greater confidence in COVID-19 vaccines. Conclusion: Frontline HCAs reported low confidence in COVID-19 vaccines. Stronger organizational leadership in the workplace appears to be an important factor in influencing HCA's willingness to be vaccinated. Action is needed to enhance COVID-19 vaccine uptake in this important population with employers playing an important role to build vaccine confidence and trust among employees. © 2021 The American Geriatrics Society

    Open strings, 2D gravity and AdS/CFT correspondence

    Get PDF
    We present a detailed discussion of the duality between dilaton gravity on AdS_2 and open strings. The correspondence between the two theories is established using their symmetries and field theoretical, thermodynamic, and statistical arguments. We use the dual conformal field theory to describe two-dimensional black holes. In particular, all the semiclassical features of the black holes, including the entropy, have a natural interpretation in terms of the dual microscopic conformal dynamics. The previous results are discussed in the general framework of the Anti-de Sitter/Conformal Field Theory dualities.Comment: 22 pages, Typeset using REVTE

    Predicting the resilience and recovery of aquatic systems: A framework for model evolution within environmental observatories

    Get PDF
    Maintaining the health of aquatic systems is an essential component of sustainable catchment management, however, degradation of water quality and aquatic habitat continues to challenge scientists and policy-makers. To support management and restoration efforts aquatic system models are required that are able to capture the often complex trajectories that these systems display in response to multiple stressors. This paper explores the abilities and limitations of current model approaches in meeting this challenge, and outlines a strategy based on integration of flexible model libraries and data from observation networks, within a learning framework, as a means to improve the accuracy and scope of model predictions. The framework is comprised of a data assimilation component that utilizes diverse data streams from sensor networks, and a second component whereby model structural evolution can occur once the model is assessed against theoretically relevant metrics of system function. Given the scale and transdisciplinary nature of the prediction challenge, network science initiatives are identified as a means to develop and integrate diverse model libraries and workflows, and to obtain consensus on diagnostic approaches to model assessment that can guide model adaptation. We outline how such a framework can help us explore the theory of how aquatic systems respond to change by bridging bottom-up and top-down lines of enquiry, and, in doing so, also advance the role of prediction in aquatic ecosystem management

    Strongly Hyperbolic Extensions of the ADM Hamiltonian

    Full text link
    The ADM Hamiltonian formulation of general relativity with prescribed lapse and shift is a weakly hyperbolic system of partial differential equations. In general weakly hyperbolic systems are not mathematically well posed. For well posedness, the theory should be reformulated so that the complete system, evolution equations plus gauge conditions, is (at least) strongly hyperbolic. Traditionally, reformulation has been carried out at the level of equations of motion. This typically destroys the variational and Hamiltonian structures of the theory. Here I show that one can extend the ADM formalism to (i) incorporate the gauge conditions as dynamical equations and (ii) affect the hyperbolicity of the complete system, all while maintaining a Hamiltonian description. The extended ADM formulation is used to obtain a strongly hyperbolic Hamiltonian description of Einstein's theory that is generally covariant under spatial diffeomorphisms and time reparametrizations, and has physical characteristics. The extended Hamiltonian formulation with 1+log slicing and gamma--driver shift conditions is weakly hyperbolic.Comment: This version contains minor corrections and clarifications. The format has been changed to conform with IOP styl

    Computational modelling of amino acid exchange and facilitated transport in placental membrane vesicles

    Get PDF
    AbstractPlacental amino acid transport is required for fetal development and impaired transport has been associated with poor fetal growth. It is well known that placental amino acid transport is mediated by a broad array of specific membrane transporters with overlapping substrate specificity. However, it is not fully understood how these transporters function, both individually and as an integrated system. We propose that mathematical modelling could help in further elucidating the underlying mechanisms of how these transporters mediate placental amino acid transport.The aim of this work is to model the sodium independent transport of serine, which has been assumed to follow an obligatory exchange mechanism. However, previous amino acid uptake experiments in human placental microvillous plasma membrane vesicles have persistently produced results that are seemingly incompatible with such a mechanism; i.e. transport has been observed under zero-trans conditions, in the absence of internal substrates inside the vesicles to drive exchange. This observation raises two alternative hypotheses; (i) either exchange is not fully obligatory, or (ii) exchange is indeed obligatory, but an unforeseen initial concentration of amino acid substrate is present within the vesicle which could drive exchange.To investigate these possibilities, a mathematical model for tracer uptake was developed based on carrier mediated transport, which can represent either facilitated diffusion or obligatory exchange (also referred to as uniport and antiport mechanisms, respectively). In vitro measurements of serine uptake by placental microvillous membrane vesicles were carried out and the model applied to interpret the results based on the measured apparent Michaelis–Menten parameters Km and Vmax. In addition, based on model predictions, a new time series experiment was implemented to distinguish the hypothesised transporter mechanisms. Analysis of the results indicated the presence of a facilitated transport component, while based on the model no evidence for substantial levels of endogenous amino acids within the vesicle was found
    corecore