17 research outputs found

    Pulmonary Microvascular Occlusion in Aggregate Anaphylaxis

    No full text

    Pulmonary capillary recruitment and distention in mammalian lungs: species similarities

    No full text
    Pulmonary arterial pressure rises minimally during exercise. The pulmonary microcirculation accommodates increasing blood flow via recruitment of pulmonary capillaries and, at higher flows, by distention of already perfused capillaries. The flow transition range between recruitment and distention has not been studied or compared across mammalian species, including humans. We hypothesised that the range would be similar. Functional pulmonary capillary surface area (FCSA) can be estimated using validated metabolic techniques. We reviewed data from previous studies in three mammalian species (perfused rabbit lungs and dog lung lobes, and exercising humans) and generated blood flow–FCSA curves over a range of flows. We noted where the curves diverged from the theoretical line of pure recruitment (Recruitment) and determined the flow where the curve slope equalled 50% that of Recruitment, or equalled that of a theoretical curve representing full capillary distention (Distention). The three mammalian species have similar flow ranges for the transition from predominantly recruitment to predominantly distention, with dogs having the highest transition point. Within the physiological range of most daily activity, the species are similar and accommodate increasing blood flow mainly via recruitment, with progressive distention at higher flows. This is highly relevant to pulmonary physiology during exercise. © 2022, European Respiratory Society. All rights reserved

    Pulmonary capillary surface area in supine exercising humans: Demonstration of vascular recruitment

    No full text
    In exercising humans, cardiac output (CO) increases, with minor increases in pulmonary artery pressure (PAP). It is unknown if the CO is accommodated via distention of already perfused capillaries or via recruitment of nonconcomitantly perfused pulmonary capillaries. Ten subjects (9 female) performed symptom-limited exercise. Six had resting mean PAP (PAPm) <20 mmHg, and four had PAPm between 21 and 24 mmHg. The first-pass pulmonary circulatory metabolism of [3H]ben-zoyl-Phe-Ala-Pro (BPAP) was measured at rest and at peak exercise, and functional capillary surface area (FCSA) was calculated. Data are means ± SD. Mean pulmonary arterial pressure rose from 18.8 ± 3.3 SD mmHg to 28.5 ± 4.6 SD mmHg, CO from 6.4 ± 1.6 to 13.4 ± 2.9 L/min, and pulmonary artery wedge pressure from 14 ± 3.3 to 19.5 ± 5 mmHg (all P ≤ 0.001). Percent BPAP metabolism fell from 74.7 ± 0.1% to 67.1 ± 0.1%, and FCSA/body surface area (BSA) rose from 2,939 ± 640 to 5,018 ± 1,032 mL·min- 1·m- 2 (all P < 0.001). In nine subjects, the FCSA/BSA-to-CO relationship suggested principally capillary recruitment and not distention. In subject 10, a marathon runner, resting CO and FCSA/BSA were high, and increases with exercise suggested distention. Exercising humans demonstrate pulmonary capillary recruitment and distention. At moderate resting CO, increasing blood flow causes principally recruitment while, based on one subject, when exercise begins at high CO, further increases appear to cause distention. Our findings clarify an important physiologic question. The technique may provide a means for further understanding exercise physiology, its limitation in pulmonary hypertension, and responses to therapy. Copyright © 2019 the American Physiological Society

    Pulmonary capillary endothelium-bound angiotensin-converting enzyme activity in acute lung injury

    No full text
    Background - Pulmonary capillary endothelium-bound (PCEB) angiotensin-converting ectoenzyme (ACE) activity alteration is an early, sensitive, and quantifiable lung injury index in animal models. We hypothesized that (1) PCEB-ACE alterations can be found in patients with acute lung injury (ALI) and (2) PCEB-ACE activity correlates with the severity of lung injury and may be used as a quantifiable marker of the underlying pulmonary capillary endothelial dysfunction. Methods and Results - Applying indicator-dilution techniques, we measured single-pass transpulmonary hydrolysis of the synthetic ACE substrate 3H-benzoyl-Phe-Ala-Pro (BPAP) in 33 mechanically ventilated, critically ill patients with a lung injury score (LIS) ranging from 0 (no lung injury) to 3.7 (severe lung injury) and calculated the kinetic parameter A(max)/K(m). Both parameters decreased early during the ALl continuum and were inversely related to APACHE II score and LIS. Hydrolysis decreased with increasing cardiac output (CO), whereas 2 different patterns were observed between CO and A(max)/K(m). Conclusions - PCEB-ACE activity decreases early during ALI, correlates with the clinical severity of both the lung injury and the underlying disease, and may be used as a quantifiable marker of underlying pulmonary capillary endothelial dysfunction

    Pulmonary capillary surface area in supine exercising humans: demonstration of vascular recruitment

    No full text
    In exercising humans, cardiac output (CO) increases, with minor increases in pulmonary artery pressure (PAP). It is unknown if the CO is accommodated via distention of already perfused capillaries or via recruitment of nonconcomitantly perfused pulmonary capillaries. Ten subjects (9 female) performed symptom-limited exercise. Six had resting mean PAP (PAPm) <20 mmHg, and four had PAPm between 21 and 24 mmHg. The first-pass pulmonary circulatory metabolism of [3H]benzoyl-Phe-Ala-Pro (BPAP) was measured at rest and at peak exercise, and functional capillary surface area (FCSA) was calculated. Data are means ± SD. Mean pulmonary arterial pressure rose from 18.8 ± 3.3 SD mmHg to 28.5 ± 4.6 SD mmHg, CO from 6.4 ± 1.6 to 13.4 ± 2.9 L/min, and pulmonary artery wedge pressure from 14 ± 3.3 to 19.5 ± 5 mmHg (all P ≤ 0.001). Percent BPAP metabolism fell from 74.7 ± 0.1% to 67.1 ± 0.1%, and FCSA/body surface area (BSA) rose from 2,939 ± 640 to 5,018 ± 1,032 mL·min-1·m-2 (all P < 0.001). In nine subjects, the FCSA/BSA-to-CO relationship suggested principally capillary recruitment and not distention. In subject 10, a marathon runner, resting CO and FCSA/BSA were high, and increases with exercise suggested distention. Exercising humans demonstrate pulmonary capillary recruitment and distention. At moderate resting CO, increasing blood flow causes principally recruitment while, based on one subject, when exercise begins at high CO, further increases appear to cause distention. Our findings clarify an important physiologic question. The technique may provide a means for further understanding exercise physiology, its limitation in pulmonary hypertension, and responses to therapy.SCOPUS: ar.jDecretOANoAutActifinfo:eu-repo/semantics/publishe
    corecore