4,360 research outputs found
Putting the wood back into our rivers: an experiment in river rehabilitation
This paper presents an overview of a project established to assess the effectiveness of woody debris (WD) reintroduction as a river rehabilitation tool. An outline of an experiment is presented that aims to develop and assess the effectiveness of engineered log jams (ELJs) under Australian conditions, and to demonstrate the potential for using a range of ELJs to stabilise a previously de-snagged, high energy gravel-bed channel. Furthermore, the experiment will test the effectiveness of a reach based rehabilitation strategy to increase geomorphic variability and hence habitat diversity. While primarily focusing on the geomorphic and engineering aspects of the rehabilitation strategy, fish and freshwater mussel populations are also being monitored. The project is located within an 1100m reach of the Williams River, NSW. Twenty separate ELJ structures were constructed, incorporating a total of 430 logs placed without any artificial anchoring (e.g., no cabling or imported ballast). A geomorphic control reach was established 3.1 km upstream of the project reach. In the 6 months since the structures were built the study site has experienced 6 flows that have overtopped most structures, 3 of the flows were in excess of the mean annual flood, inundating 19 of the ELJs by 2 - 3 m, and one by 0.5 m. Early results indicate that with the exception of LS4 and LS5, all structures are performing as intended and that the geomorphic variability of the reach has substantially increased
The depth distribution of exploited reef fish populations off the south and west coasts of Barbados
Impact of Endogenous Bile Salts on the Thermodynamics of Supersaturated Active Pharmaceutical Ingredient Solutions
A variety of formulation strategies have been developed to mitigate the inadequate aqueous solubility of certain therapeutic agents. Among these, achieving supersaturation in vivo is a promising approach to improve the extent of oral absorption. Because of the thermodynamic instability of supersaturated solutions, inhibitors are needed to kinetically hinder crystallization. In addition to commonly used polymeric additives, bile salts, naturally present in the gastrointestinal tract, have been shown to exhibit crystallization inhibition properties. However, the impact of bile salts on solution thermodynamics is not well understood, although this knowledge is essential in order to explore the mechanism of crystallization inhibition. To better describe solution thermodynamics in the presence of bile salts, a side-by-side diffusion cell was used to evaluate solute flux for solutions of telaprevir in the absence and presence of the six most abundant bile salts in human intestinal fluid at various solute concentrations; flux measurements provide information about the solute thermodynamic activity and hence can provide an improved measurement of supersaturation in complex solutions. Trihydroxy bile salts had minimal impact on solution phase boundaries as well as solute flux, while micellar dihydroxy bile salts solubilized telaprevir leading to reduced solute flux across the membrane. An inconsistency between the concentration-based supersaturation ratio and that based on solute thermodynamic activity (the fundamental driving force for crystallization) was noted, suggesting that the activity-based supersaturation should be determined to better interpret any modification in crystallization kinetics in the presence of these additives. These findings indicate that bile salts are not interchangeable from a thermodynamic perspective and provide a foundation for further studies evaluating the mechanism of crystallization inhibition
Indestructibility of Vopenka's Principle
We show that Vopenka's Principle and Vopenka cardinals are indestructible
under reverse Easton forcing iterations of increasingly directed-closed partial
orders, without the need for any preparatory forcing. As a consequence, we are
able to prove the relative consistency of these large cardinal axioms with a
variety of statements known to be independent of ZFC, such as the generalised
continuum hypothesis, the existence of a definable well-order of the universe,
and the existence of morasses at many cardinals.Comment: 15 pages, submitted to Israel Journal of Mathematic
Ariel - Volume 4 Number 2
Editors
David A. Jacoby
Eugenia Miller
Tom Williams
Associate Editors
Paul Bialas
Terry Burt
Michael Leo
Gail Tenikat
Editor Emeritus and Business Manager
Richard J. Bonnano
Movie Editor
Robert Breckenridge
Staff
Richard Blutstein
Mary F. Buechler
Steve Glinks
Len Grasman
Alice M. Johnson
J. D. Kanofsky
Tom Lehman
Dave Mayer
Bernie Odd
Deformation of the Planetary Orbits Caused by the Time Dependent Gravitational Potential in the Universe
In the paper are studied the deformations of the planetary orbits caused by
the time dependent gravitational potential in the universe. It is shown that
the orbits are not axially symmetric and the time dependent potential does not
cause perihelion precession. It is found a simple formula for the change of the
orbit period caused by the time dependent gravitational potential and it is
tested for two binary pulsars.Comment: 7 page
Holographic Coulomb branch vevs
We compute holographically the vevs of all chiral primary operators for
supergravity solutions corresponding to the Coulomb branch of N=4 SYM and find
exact agreement with the corresponding field theory computation. Using the
dictionary between 10d geometries and field theory developed to extract these
vevs, we propose a gravity dual of a half supersymmetric deformation of N=4 SYM
by certain irrelevant operators.Comment: 16 pages, v2 corrections in appendi
Simulation of Water Cerenkov Detectors Using {\sc geant4}
We present a detailed simulation of the performance of water Cerenkov
detectors suitable for use in the Pierre Auger Observatory. Using {\sc geant4},
a flexible object-oriented simulation program, including all known physics
processes, has been developed. The program also allows interactive
visualization, and can easily be modified for any experimental setup.Comment: Talk to be presented at the XI Symposium on Very High Energy Cosmic
Ray Interaction
Correlation functions of small-scale fluctuations of the interplanetary magnetic field
The Interplanetary Magnetic Field shows complex spatial and temporal
variations. Single spacecraft measurements reveal only a one dimensional
section of this rich four dimensional phenomenon. Multi-point measurements of
the four Cluster spacecraft provide a unique tool to study the spatiotemporal
structure of the field. Using Cluster data we determined three dimensional
correlation functions of the fluctuations. By means of the correlation function
one can describe and measure field variations. Our results can be used to
verify theoretical predictions, to understand the formation and nature of solar
wind turbulence. We found that the correlation length varies over almost six
orders of magnitude. The IMF turbulence shows significant anisotropy with two
distinct populations. In certain time intervals the ratio of the three axes of
the correlation ellipse is 1/2.2/6 while in the remaining time we found
extremely high correlation along one axis. We found favoured directions in the
orientation of the correlation ellipsoids.Comment: accepted to Solar Physics on June 14, 2010. 10 pages, 8 figure
- …
