651 research outputs found
First normal stress difference and crystallization in a dense sheared granular fluid
The first normal stress difference () and the microstructure
in a dense sheared granular fluid of smooth inelastic hard-disks are probed
using event-driven simulations. While the anisotropy in the second moment of
fluctuation velocity, which is a Burnett-order effect, is known to be the
progenitor of normal stress differences in {\it dilute} granular fluids, we
show here that the collisional anisotropies are responsible for the normal
stress behaviour in the {\it dense} limit. As in the elastic hard-sphere
fluids, remains {\it positive} (if the stress is defined in
the {\it compressive} sense) for dilute and moderately dense flows, but becomes
{\it negative} above a critical density, depending on the restitution
coefficient. This sign-reversal of occurs due to the {\it
microstructural} reorganization of the particles, which can be correlated with
a preferred value of the {\it average} collision angle in the direction opposing the shear. We also report on the shear-induced
{\it crystal}-formation, signalling the onset of fluid-solid coexistence in
dense granular fluids. Different approaches to take into account the normal
stress differences are discussed in the framework of the relaxation-type
rheological models.Comment: 21 pages, 13 figure
Collineation group as a subgroup of the symmetric group
Let be the projectivization (i.e., the set of one-dimensional vector
subspaces) of a vector space of dimension over a field. Let be a
closed (in the pointwise convergence topology) subgroup of the permutation
group of the set . Suppose that contains the
projective group and an arbitrary self-bijection of transforming a
triple of collinear points to a non-collinear triple. It is well-known from
\cite{KantorMcDonough} that if is finite then contains the
alternating subgroup of .
We show in Theorem \ref{density} below that , if
is infinite.Comment: 9 page
The semileptonic B->pi decay in a Constituent Quark-Meson model
We evaluate the form factors describing the exclusive decay B-> pi l nu by
using a Constituent Quark-Meson model based on an effective quark-meson
Lagrangian (CQM). The model allows for an expansion in the pion momenta and we
consider terms up to the first order in the pion field derivatives. We compute
the leading terms in the soft pion limit and consider corrections to this
limit.Comment: 6 pages, 3 figures, LaTeX (uses aps, epsf, revtex), formula 26
corrected, discussion enlarged, references updated and other minor change
A stochastic model for heart rate fluctuations
Normal human heart rate shows complex fluctuations in time, which is natural,
since heart rate is controlled by a large number of different feedback control
loops. These unpredictable fluctuations have been shown to display fractal
dynamics, long-term correlations, and 1/f noise. These characterizations are
statistical and they have been widely studied and used, but much less is known
about the detailed time evolution (dynamics) of the heart rate control
mechanism. Here we show that a simple one-dimensional Langevin-type stochastic
difference equation can accurately model the heart rate fluctuations in a time
scale from minutes to hours. The model consists of a deterministic nonlinear
part and a stochastic part typical to Gaussian noise, and both parts can be
directly determined from the measured heart rate data. Studies of 27 healthy
subjects reveal that in most cases the deterministic part has a form typically
seen in bistable systems: there are two stable fixed points and one unstable
one.Comment: 8 pages in PDF, Revtex style. Added more dat
Measurement of the Decay Asymmetry Parameters in and
We have measured the weak decay asymmetry parameters (\aLC ) for two \LC\
decay modes. Our measurements are \aLC = -0.94^{+0.21+0.12}_{-0.06-0.06} for
the decay mode and \aLC = -0.45\pm 0.31 \pm
0.06 for the decay mode . By combining these
measurements with the previously measured decay rates, we have extracted the
parity-violating and parity-conserving amplitudes. These amplitudes are used to
test models of nonleptonic charmed baryon decay.Comment: 11 pages including the figures. Uses REVTEX and psfig macros. Figures
as uuencoded postscript. Also available as
http://w4.lns.cornell.edu/public/CLNS/1995/CLNS95-1319.p
Measurement of the branching fraction for
We have studied the leptonic decay of the resonance into tau
pairs using the CLEO II detector. A clean sample of tau pair events is
identified via events containing two charged particles where exactly one of the
particles is an identified electron. We find . The result is consistent with
expectations from lepton universality.Comment: 9 pages, RevTeX, two Postscript figures available upon request, CLNS
94/1297, CLEO 94-20 (submitted to Physics Letters B
Detector Description and Performance for the First Coincidence Observations between LIGO and GEO
For 17 days in August and September 2002, the LIGO and GEO interferometer
gravitational wave detectors were operated in coincidence to produce their
first data for scientific analysis. Although the detectors were still far from
their design sensitivity levels, the data can be used to place better upper
limits on the flux of gravitational waves incident on the earth than previous
direct measurements. This paper describes the instruments and the data in some
detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial
change
Ward Identities, B-> \rho Form Factors and |V_ub|
The exclusive FCNC beauty semileptonic decay B-> \rho is studied using Ward
identities in a general vector meson dominance framework, predicting vector
meson couplings involved. The long distance contributions are discussed which
results to obtain form factors and |V_ub|. A detailed comparison is given with
other approaches.Comment: 30 pages+four postscript figures, an Appendix adde
Charm multiplicity and the branching ratios of inclusive charmless b quark decays in the general two-Higgs-doublet models
In the framework of general two-Higgs-doublet models, we calculate the
branching ratios of various inclusive charmless b decays by using the low
energy effective Hamiltonian including next-to-leading order QCD corrections,
and examine the current status and the new physics effects on the determination
of the charm multiplicity and semileptonic branching ratio .
Within the considered parameter space, the enhancement to the ratio due to the charged-Higgs penguins can be as large as a factor of 8 (3) in
the model III (II), while the ratio can be increased from
the standard model prediction of 2.49% to 4.91% (2.99%) in the model III (II).
Consequently, the value of and can be decreased simultaneously
in the model III. The central value of will be lowered slightly by
about 0.003, but the ratio can be reduced significantly from the
theoretical prediction of in the SM to , for GeV, respectively. We find that
the predicted and the measured now agree within roughly one
standard deviation after taking into account the effects of gluonic charged
Higgs penguins in the model III with a relatively light charged Higgs boson.Comment: 25 pages, Latex file, axodraw.sty, 6 figures. Final version to be
published in Phys.Rev.
Leptonic and Semileptonic Decays of Charm and Bottom Hadrons
We review the experimental measurements and theoretical descriptions of
leptonic and semileptonic decays of particles containing a single heavy quark,
either charm or bottom. Measurements of bottom semileptonic decays are used to
determine the magnitudes of two fundamental parameters of the standard model,
the Cabibbo-Kobayashi-Maskawa matrix elements and . These
parameters are connected with the physics of quark flavor and mass, and they
have important implications for the breakdown of CP symmetry. To extract
precise values of and from measurements, however,
requires a good understanding of the decay dynamics. Measurements of both charm
and bottom decay distributions provide information on the interactions
governing these processes. The underlying weak transition in each case is
relatively simple, but the strong interactions that bind the quarks into
hadrons introduce complications. We also discuss new theoretical approaches,
especially heavy-quark effective theory and lattice QCD, which are providing
insights and predictions now being tested by experiment. An international
effort at many laboratories will rapidly advance knowledge of this physics
during the next decade.Comment: This review article will be published in Reviews of Modern Physics in
the fall, 1995. This file contains only the abstract and the table of
contents. The full 168-page document including 47 figures is available at
http://charm.physics.ucsb.edu/papers/slrevtex.p
- …
