240 research outputs found

    The behavior of kinetic parameters in production of pectinase and xylanase by solid-state fermentation

    Get PDF
    AbstractSolid-state fermentation (SSF) is defined as the growth of microbes without a free-flowing aqueous phase. The feasibility of using a citrus peel for producing pectinase and xylanase via the SSF process by Aspergillus niger F3 was evaluated in a 2kg bioreactor. Different aeration conditions were tested to optimize the pectinase and xylanase production. The best air flow intensity was 1VkgM (volumetric air flow per kilogram of medium), which allowed a sufficient amount of O2 for the microorganism growth producing 265U/g and 65U/g pectinases and xylanases, respectively. A mathematical model was applied to determine the different kinetic parameters related to SSF. The specific growth rate and biomass oxygen yield decreased during fermentation, whereas an increase in the maintenance coefficient for the different employed carbon sources was concurrently observed

    Independent validation of the Enhanced Liver Fibrosis (ELF) score in the ANRS HC EP 23 Fibrostar cohort of patients with chronic hepatitis C

    Get PDF
    BACKGROUND: The Enhanced Liver Fibrosis (ELF) score combining serum hyaluronan, N-terminal peptide of type III procollagen and tissue inhibitor of metalloproteinase-1, was reported as relevant in predicting liver fibrosis in chronic liver disease and proposed as an alternative to liver biopsy. METHODS: We evaluated the ELF score in a cohort of chronic hepatitis C (CHC) patients included in a multicenter prospective study (ANRS HC EP 23 Fibrostar) using commercial reagents, different from those developed by the manufacturer of the Siemens ELF™ test. RESULTS: In 512 CHC, the ELF score, using ROC curves, showed good predictive performances for severe fibrosis [AUROC=0.82; 95% confidence interval (CI) 0.78-0.86]and for cirrhosis (AUROC=0.85; 95% CI 0.81-0.90), but slightly lower for significant fibrosis (AUROC=0.78; 95% CI 0.74-0.82). The Obuchowski measure (0.81) showed that the ELF score globally performed as a marker of liver fibrosis. The ELF score predicted significant fibrosis (cut-off=9.0) with a sensitivity of 0.86, a specificity of 0.62, a positive predictive value (PPV) of 0.80 and a negative predictive value (NPV) of 0.70. For extensive fibrosis (cut-off=9.33), sensitivity was 0.90, specificity was 0.63, PPV was 0.73 and NPV was 0.85. For cirrhosis (cut-off=9.35), sensitivity was 0.83, specificity was 0.75, PPV was 0.44 and NPV was 0.95. CONCLUSIONS: This study confirms the ELF score performance as an index to predict liver fibrosis or cirrhosis in CHC. The ELF test, using validated reagents, could be added to the health authorities approved non-invasive tests in assessing fibrosis as surrogate to liver biopsy

    Partial Wave Analysis of the Reaction p(3.5GeV)+ppK+Λp(3.5 GeV)+p \to pK^+\Lambda to Search for the "ppKppK^-" Bound State

    Get PDF
    Employing the Bonn-Gatchina partial wave analysis framework (PWA), we have analyzed HADES data of the reaction p(3.5GeV)+ppK+Λp(3.5GeV)+p\to pK^{+}\Lambda. This reaction might contain information about the kaonic cluster "ppKppK^-" via its decay into pΛp\Lambda. Due to interference effects in our coherent description of the data, a hypothetical KNN\overline{K}NN (or, specifically "ppKppK^-") cluster signal must not necessarily show up as a pronounced feature (e.g. a peak) in an invariant mass spectra like pΛp\Lambda. Our PWA analysis includes a variety of resonant and non-resonant intermediate states and delivers a good description of our data (various angular distributions and two-hadron invariant mass spectra) without a contribution of a KNN\overline{K}NN cluster. At a confidence level of CLs_{s}=95\% such a cluster can not contribute more than 2-12\% to the total cross section with a pK+ΛpK^{+}\Lambda final state, which translates into a production cross-section between 0.7 μb\mu b and 4.2 μb\mu b, respectively. The range of the upper limit depends on the assumed cluster mass, width and production process.Comment: 7 Pages, 5 Figure

    Production of Sigma{\pm}pi?pK+ in p+p reactions at 3.5 GeV beam energy

    Full text link
    We study the production of Sigma^+-pi^+-pK^+ particle quartets in p+p reactions at 3.5 GeV kinetic beam energy. The data were taken with the HADES experiment at GSI. This report evaluates the contribution of resonances like Lambda(1405$, Sigma(1385)^0, Lambda(1520), Delta(1232), N^* and K^*0 to the Sigma^+- pi^-+ p K+ final state. The resulting simulation model is compared to the experimental data in several angular distributions and it shows itself as suitable to evaluate the acceptance corrections properly.Comment: 15 pages, 5 figure

    Formation of Nanopits in Si Capping Layers on SiGe Quantum Dots

    Get PDF
    In-situ annealing at a high temperature of 640°C was performed for a low temperature grown Si capping layer, which was grown at 300°C on SiGe self-assembled quantum dots with a thickness of 50 nm. Square nanopits, with a depth of about 8 nm and boundaries along 〈110〉, are formed in the Si capping layer after annealing. Cross-sectional transmission electron microscopy observation shows that each nanopit is located right over one dot with one to one correspondence. The detailed migration of Si atoms for the nanopit formation is revealed by in-situ annealing at a low temperature of 540°C. The final well-defined profiles of the nanopits indicate that both strain energy and surface energy play roles during the nanopit formation, and the nanopits are stable at 640°C. A subsequent growth of Ge on the nanopit-patterned surface results in the formation of SiGe quantum dot molecules around the nanopits
    corecore